首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(1):674-683
In order to protect carbon fibers (CF) from oxidation damage during sintering process, rod-like Mg-doped nano-hydroxyapatite (Mg-nHA) with an increased thermal decomposition temperature and reduced sintering temperature was synthesized by hydrothermal method. The synthesized bone-like Mg-nHA with similar composition and morphology to bone apatite was used as the matrix to prepare CF reinforced Mg-nHA composites (CF/Mg-nHA) at a low temperature of 700 °C by pressureless sintering. The increase of temperature slightly influenced the growth of Mg-nHA prepared by hydrothermal method from 160 °C to 200 °C. The Mg-nHA were short and rod-like in structure with a length of approximate 100 nm. When doping 1% magnesium, the decomposition temperature of Mg-nHA increased by 100 °C compared with that of nHA. This can protect CF from oxidation damage which is often encountered when sintering CF reinforced hydroxyapatite composites at high temperature and enhance reinforcing effects of CF. The bending strength of CF/Mg-nHA with 1 wt% CF was 8.51 MPa, which increased by 19.5% compared with Mg-nHA. Alternatively, the rod-like Mg-nHA was prepared on the surface of CF by electrochemical deposition and Mg-nHA coated CF was used to reinforce Mg-nHA, the coefficient of thermal expansion mismatch between CF and HA matrix could be mitigated. The compressive strength of Mg-nHA coated CF reinforced Mg-nHA (CF/Mg-nHA/Mg-nHA) composites with 0.5% CF sintered at 800 °C were 41.3 ± 1.56 MPa, which was attributed to the improved strengthening effect of CF and the good interface between CF and Mg-nHA matrix.  相似文献   

2.
As a result of the growing interest in the biological and mechanical performance of hydroxyapatite (HA)–graphene nano-sheets (GNs) composite systems, reduced graphene oxide (rGO) reinforced hydroxyapatite nano-tube (nHA) composites were synthesized in situ using a simple hydrothermal method in a mixed solvent system of ethylene glycol (EG), N,N-dimethylformamide (DMF) and water, without using any of the typical reducing agents. The consolidation process was performed by hot isostatic pressing (HIP) at 1150 °C and 160 MPa. The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, enabling confirmation of the synthesis and reduction of the nHA and rGO, respectively. The structure of the synthesized powder and cell attachment on the sintered sample was confirmed by field emission scanning electron microscopy (FESEM). The effects of the rGO on the mechanical properties and the in vitro biocompatibility of the nHA based ceramic composites were investigated. The elastic modulus and fracture toughness of the sintered samples increased with the increase of the rGO content when compared to the pure nHA by 86% and 40%, respectively. Cell culture and viability test results showed that the addition of the rGO promotes osteoblast adhesion and proliferation, thereby increasing the biocompatibility of the nHA–rGO composite.  相似文献   

3.
Continuous carbon fibre (CF) reinforced HA (CF/HA) composite scaffolds were prepared using a self-designed and manufactured 3D printer. The optimised design of nozzle structure and the tailored viscoelastic property of HA inks ensured compound extrusion of monofilament and multifilament CF with HA rod. The composite scaffolds designed using the CAD programme and sintered via a suitable process exhibited a hierarchical macro/microporous structure and contained approximately 50% HA and 50% β-TCP. The continuous CF synchronously enhanced the strength and toughness of the scaffolds. The compressive strengths of 1CF/HA and 5CF/HA were 11.4 ± 1.7 MPa and 16.3 ± 2.6 MPa, respectively, which were approximately double and triple compared with that of HA scaffolds. The fracture toughness of 1CF/HA was approximately double that of HA scaffolds and close to that of cortical bone. In vitro and in vivo studies demonstrated that 1CF/HA also had apatite formation capability and adequate bone regeneration capacity.  相似文献   

4.
Nano hydroxyapatite (nHA)–zirconia (ZrO2) composites have been produced by spark plasma sintering (SPS). During the SPS process low temperatures (600–950 °C) and short dwelling time (5 min) have been applied to avoid the decomposition of nHA as well as the reaction between nHA and ZrO2. The grain size of the sintered composites was between 200 and 1000 nm. Carbon diffusion was induced from the graphite die and layered composite structure was formed. These observations might be related to the spark plasma sintering side effects. The microstructure and mechanical properties of high hydroxyapatite content zirconia composites have been found to be influenced and strongly correlated with the specialties of SPS method.  相似文献   

5.
Environmentally friendly, biodegradable composites were prepared via overmolding of poly(lactic acid) (PLA) onto PLA/jute-mat, named as “ecosheets,” reinforced continuous fiber composite sheets. Film stacking procedure was used to prepare ecosheets via using a hot-press. The fiber orientation was changed as −45°/+45° and 0°/0°. −45°/+45° orientation exhibited higher properties as compared to 0°/0° for ecosheets; therefore, this construction was used to produce overmolded composites (OMCs). The mechanical tests showed that flexural modulus and strength of OMCs were improved in comparison to neat PLA. The dynamic mechanical analysis exhibited that the thermomechanical resistance of PLA was enhanced for OMCs. Scanning electron microscopy investigation showed that the jute/PLA interphase needs to be improved to further increase the properties. It was concluded that one of the biggest advantages of this novel technique was the increase of mechanical properties of PLA without altering the density. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48692.  相似文献   

6.
The addition of bio-inert ceramics such as alumina and zirconia can significantly improve the mechanical properties of hydroxyapatite bioactive coatings and increase their biocompatibility. In the present study, the surface of a titanium substrate was coated by the electrophoretic deposition method (EPD). Moreover, the reaction bonding process has been used to precipitate the nanocomposite containing the hydroxyapatite (HA), alumina, yitteria-stabilized zirconia (YSZ). The coating process was performed by an electrical power supply and a suspension of hydroxyapatite, aluminum, and YSZ nanopowders. For preparing a suspension consisting of 50% isopropanol and 50% acetone, 0.6 g/L of iodine was used as a stabilizer. Green and sintered coatings were analyzed by FE-SEM and XRD. In addition, the mechanical properties such as bonding strength, hardness, and toughness were measured. The hardness, bonding strength, and toughness of the HA coating were 107 ± 10.3 HV, 10.8 ± 3.2MPa, and 0.72MPa√m, respectively, while those of the HA-Al2O3-YSZ nanocomposite coating were 213 ± 1.8 HV, 35 ± 1.6MPa, and 1.6MPa√m, respectively.  相似文献   

7.
《Ceramics International》2023,49(6):9647-9656
In this work, graphene oxide (GO)/hydroxyapatite (HA) composite coatings were successfully prepared on titanium substrate by electrophoretic deposition technology. Subsequently, microstructure, phase composition, adhesion strength, hydrophilicity, corrosion resistance, bioactivity, antibacterial activity and biocompatibility of the coating were evaluated. The adhesion strength of coating increased by 76% from 6.46 MPa to 17.81 MPa with 0 wt% GO to 12 wt% GO and the corrosion rate of coating with 8 wt% GO was achieved at the minima of (1.493 × 10-3mm/a). Biomineralization experiment indicated the excellent bioactivity of GO/HA composite coatings. The water contact angle of the composite coatings increased from 20.6°(0 wt% GO) to 38.1°(12 wt%GO). The antibacterial rates of coating with 5 wt% GO was 96.7%, while declined to 25% after thermal treatment. In-vitro L929 cell culture experiments indicated the composite coatings with 5 wt% GO exhibited good biocompatibility.  相似文献   

8.
《Ceramics International》2022,48(18):26028-26041
Multilayered C–Si–Al coatings with various morphologies were deposited on carbon fibers (CFs) using magnetron sputtering. The thickness of the coatings was increased from 0.5 to 1.5 μm by magnetron sputtering between 90 and 120 min. C–Si–Al coatings of suitable thickness were heat-treated at 600 °C and transformed into C–Si–Al2O3 coatings by one-step anodic oxidation (AO). The oxidation time for the one/two-step anodic oxidation and the ratio of oxidation time for the two-step anodic oxidation significantly influenced the morphologies of the C–Si–Al2O3(AO) coatings. Al2O3 coatings with satisfactory morphologies and structures were prepared by two-step anodic oxidation with a total time of 30 min and a ratio of 1:1 between the initial and secondary oxidation times. The multilayered C–Si–Al2O3(AO) coatings were modified to C–Si–Al2O3 coatings by secondary heat treatment at 1050 °C. Subsequently, hot-press sintering was used to prepare CFs with multilayered C–Si–Al2O3 coating-reinforced hydroxyapatite (CF/C–Si–Al2O3/HA) composites. The multilayered C–Si–Al2O3-coated CFs demonstrated good resistance to oxidation and thermal shock. This could effectively protect CFs from oxidative damage and maintain its strengthening effect during sintering. The multilayered C, Si, and Al2O3 coatings effectively reduced the difference between the coefficient of thermal expansion of the CFs and HA matrixes. The interfacial gaps between the multilayered coatings and HA were reduced. This could enhance the mechanical performance of the composites. The CF/C–Si–Al2O3/HA composites exhibited improved mechanical properties with a bending strength of 83.94 ± 12.29 MPa, and fracture toughness of 2.45 ± 0.08 MPa m1/2. This study can broaden the application of CF/C–Si–Al2O3/HA biocomposites as bone-repair materials and help obtain CF-reinforced composites with excellent mechanical properties that are fabricated or serviced at high temperatures.  相似文献   

9.
Randomly distributed carbon fiber-reinforced hydroxyapatite (RCF/HA) and controllably distributed carbon fiber-reinforced hydroxyapatite (CCF/HA) composites were firstly studied to design and prepare different required composite artificial bones with satisfying mechanical properties by combining experiment approach, theoretical prediction and finite element analysis (FEA). A plug-in was obtained by secondary development of ABAQUS for the FEA. A 3D representative volume element (RVE) for RCF/HA and CCF/HA can be easily generated using this tool. Stress and strain analyses of three directions of RVE were performed by ABAQUS with different fiber mass fractions and distributions. The elastic modulus of CF/HA composites were obtained. With 0.2 wt% fiber, the elastic modulus of RCF/HA and CCF/HA composites increased by 6.31% and 54.4% compared with that of HA, respectively. For CCF/HA composites, the elastic modulus increased significantly with the increasing fiber mass fraction in the E11 of the fiber. The results of experiment study and theoretical prediction were consistent with that of FEA. The maximum error between the FEA and experiment study was 2.84%, which confirmed that the RVE model was rational and accurate. The results indicated the fiber distribution can greatly affect the elastic modulus of the composites. In the future study, the controllably distributed fiber–reinforced composites would be a good choice because they can improve the mechanical properties as required. This study would endow possibility of designing and preparing the CF/HA bio-ceramics with satisfied mechanical properties by FEA and proper preparation parameter. It would also speed up application of clinical practice for CF/HA composites.  相似文献   

10.
《Ceramics International》2020,46(15):23785-23796
Carbon fibre reinforced CVI-SiC matrix (Cf/SiC) composite is well known for its superior properties such as low density, high specific modulus, high fracture toughness, and high temperature mechanical properties. In the present work, 2.5-Directional Cf/SiC composites with (PyC/SiC) n=4 multilayer interface having two different thicknesses with a density of ~2.1 g cm-3 are prepared through isobaric isothermal chemical vapour infiltration technique. High temperature tensile properties of the prepared composites with and without Si-B-C seal coating are studied and the results are presented. Samples prepared without seal coat exhibited a KICof ~ 30 MPa m1/2, and tensile strength of ≥200 MPa at room temperature. Si-B-C seal coated Cf/SiC composites has shown significant increase (28%) in high temperature tensile strength at 1200 °C and 1500 °C respectively compared to uncoated composites. Microstructural observations, XRD, and XPS studies support the observed thermomechanical behaviour of these composites at 1200 °C and 1500 °C.  相似文献   

11.
In this work, hydroxyapatite (HA) powders were synthesized using calcium hydroxide Ca(OH)2 and orthophosphoric acid H3PO4 via wet chemical precipitation method in aqueous medium. Calcium‐to‐phosphorus (Ca/P) ratio was set to 1.57, 1.67, 1.87 that yield calcium‐deficient HA, stoichiometric HA, and calcium‐rich HA, respectively. These synthesized HA powders (having different Ca/P ratio) were characterized in terms of particle size and microstructural examination. Then, the densification and mechanical properties of the calcium‐deficient HA, stoichiometric HA, and calcium‐rich HA were evaluated from 1000 to 1350°C. Experimental results have shown that no decomposition of hydroxyapatite phase was observed for stoichiometric HA (Ca/P = 1.67) and calcium‐deficient HA (Ca/P = 1.57) despite sintered at high temperature of 1300°C. However, calcium oxide (CaO) was detected for calcium‐rich HA (Ca/P = 1.87) when samples sintered at the same temperature. The study revealed that the highest mechanical properties were found in stoichiometric HA samples sintered at 1100–1150°C, having relative density of ~99.8%, Young's modulus of ~120 GPa, Vickers hardness of ~7.23 GPa, and fracture toughness of ~1.22 MPam1/2.  相似文献   

12.
Potassium-based, geopolymer composites were made with BASF® metakaolin and Mymensingh clay-derived metakaolin from Bangladesh. Since the natural Mymensingh clay contained 40 wt.% quartz, this same amount of quartz particulates was added to the BASF® metakaolin to make a synthetic analog of the natural calcined clay. By analogy with bone china, bone ash or calcined hydroxyapatite (5CaO•3P2O5 or “HA”) particles, having a Ca: P ratio of 3.3:1, were added to make the three types of geopolymer-based composites described above. For less refractory particulate additions, dicalcium phosphate (DCP) (2CaO•P2O5 or “DCP”) particles, having a Ca: P ratio of 2:1, were also added to another set of geopolymers. The ambient temperature compressive and flexural strengths were measured for all of the geopolymer composites. The HA or DCP reinforced geopolymer composites were fabricated and heat-treated to 1150°C/1 h, after which they were converted to their mineralogical analogs. Their mechanical properties of compressive and 3-point flexural strengths were again measured. Flexural strengths of 22.42 ± 11.0 MPa and 31.97 ± 8.3 MPa were measured in 1 × 1 × 10 cm3 heat-treated geopolymer bars reinforced with 10 wt.% of DCP and in geopolymer reinforced with 10 wt.% DCP +40 wt.% quartz additions, respectively. Significant improvements to ambient temperature properties were observed due to the self-healing effect of the flowing amorphous DCP, whose presence was verified by SEM. The geopolymer samples exhibited reduced water absorption (WA) (on a percentage dry weight basis) of within 0.03-0.5% after being heated at 1100℃/1 h and 1125℃/1 h, as compared with those at room temperature, which varied between 2.56% and 7.89%.  相似文献   

13.
One of the different issues limiting the wider application of monolithic hydroxyapatite (HA) as an ideal bone replacement material is the lack of reasonably good electrical transport properties. The comprehensive electrical property characterization to evaluate the efficacy of processing parameters in achieving the desired combination of electroactive properties is considered as an important aspect in the development of HA-based bioactive material. In this perspective, the present work reports the temperature (RT-200 °C) and frequency (100 Hz–1 MHz) dependent dielectric properties and AC conductivity for a range of HA–CaTiO3 (HA–CT) composites, densified using both conventional pressureless sintering in air as well as spark plasma sintering in vacuum. Importantly, the AC conductivity of spark plasma sintered ceramics [~upto 10?5  cm)?1] are found to be considerably higher than the corresponding pressureless sintered ceramics [~upto 10?8 cm)?1]. Overall, the results indicate the processing route dependent functional properties of HA–CaTiO3 composites as well as related advantages of spark plasma sintering route.  相似文献   

14.
《Ceramics International》2016,42(14):15773-15779
Novel hydroxyapatite-zirconia-lanthanum oxide composites for bioceramic applications were synthesized and their structural, mechanical and biological properties were studied. Pure HA was produced via precipitation method and the composites were obtained by several fabrication steps: powder milling, mixing, cold pressing and sintering at 1100 °C for 1 h. The experimental results indicated that the composites consisted of hydroxyapatite as the main phase with a trace amount of tricalcium phosphate. Calcium zirconate (CaZrO3) was also formed by the reaction between zirconia and calcium oxide (CaO) which is the thermal decomposition product of hydroxyapatite. Addition of zirconia and lanthanum oxide resulted a more loose and porous structure on the surface. The diametral tensile strength of the composites was higher with respect to pure hydroxyapatite. The microhardness of the composites, except the one with the composition of 90 wt% HA and 10 wt% Zr, was relatively lower than that of pure HA but these composites had higher machinability. Cell culture studies with osteoblast-like Saos-2 cell line showed that composites and pure hydroxyapatite were biocompatible. Based on these findings, hydroxyapatite-zirconia-lanthanum oxide composites hold potential to be used in hard tissue replacement and regeneration therapies.  相似文献   

15.
《Ceramics International》2017,43(18):16084-16093
Carbon nanotube (CNT) possesses eminent mechanical properties and has been widely utilized to toughen bioceramics. Major challenges associated with CNT-reinforced bioceramics include the inhomogeneous dispersion of CNTs and the insufficient interfacial strength between the two phases. To address such issues, this research describes the first use of silica-coated CNT (S-CNT) core-shell structures to reinforce bioceramics using hydroxyapatite (HA) as a representative matrix. HA-based composites with 0.1–2 wt% S-CNT are sintered by spark plasma sintering to investigate their mechanical and biological properties. It is found that when 1 wt% raw CNT (R-CNT) is added, very limited increases in fracture toughness (KIC) is observed. By contrast, the incorporation of 1 wt% S-CNT increased the KIC of HA by 101.7%. This is attributed to more homogeneously dispersed fillers and stronger interfacial strengths. MG63 cells cultured on the 1 wt% S-CNT/HA pellets are found to proliferate faster and possess significantly higher alkaline phosphatase activities than those grown on the HA compacts reinforced with 1 wt% R-CNT, probably by virtue of the released Si ions from the SiO2 shell. Therefore, the S-CNT core-shell structures can improve both mechanical and biological properties of HA more effectively than the conventionally used R-CNTs. The current study also presents a novel and effective approach to the enhancement of many other biomedical and structural materials through S-CNT incorporation.  相似文献   

16.
《Ceramics International》2023,49(8):12381-12389
In the recent years, research on the development of hydroxyapatite (HA) using calcium from natural resources such as limestone, mammalian bones, marine shells and avian eggshells have been extensively studied. However, many studies focused on the properties of prestine HA without incorporation of dopants for strengthening effect. In this work, HA bioceramic was prepared using waste chicken eggshells calcium with addition of various concentrations of zinc dopant (1, 3 and 5 mol% Zn). In this work, the zinc-doped HA (ZnHA) was synthesized using a wet-chemical precipitation technique followed by oven drying and unixial pressing to formed green compacts. Pressureless sintering was carried out at 1200, 1250 and 1300 °C. The results showed that 5 mol% ZnHA (5ZnHA) exhibited the overall best properties after sintering at 1250 °C. The improvement in the fracture toughness was attributed to the formation of β-TCP phase when zinc ion was incorporated into HA, combined with enhanced densification. It was observed that the HA grains were coarser and more densely when sintered at 1250 °C, indicating that there was strong interaction between pores and grain boundaries. However, fracture toughness slightly declined after sintering at 1300 °C due to rapid and abnormal HA grain growth.  相似文献   

17.
Composites based on carbon fiber (CF) and benzoxazine (BA‐a) modified with PMDA were investigated. The flammability of the carbon fiber composites was examined by limiting oxygen index (LOI) and UL‐94 vertical tests. The LOI values increased from 26.0 for the CF/poly(BA‐a) composite to 49.5 for the CF‐reinforced BA‐a/PMDA composites as thin as 1.0 mm and the CF‐reinforced BA‐a/PMDA composites were also achieved the maximum V‐0 fire resistant classification. Moreover, the incorporation of the PMDA into poly(BA‐a) matrix significantly enhanced the Tg and the storage modulus (E') values of the CF‐reinforced BA‐a/PMDA composites rather than those of the CF/poly(BA‐a). The Tg values and storage moduli of the obtained CF‐reinforced BA‐a/PMDA composites were found to have relatively high value up to 237°C and 46 GPa, respectively. The CF‐reinforced BA‐a/PMDA composites exhibited relatively high degradation temperature up to 498°C and substantial enhancement in char yield with a value of up to 82%, which are somewhat higher compared to those of the CF/poly(BA‐a) composite, i.e., 405°C and 75.7%, respectively. Therefore, due to the improvement in flame retardant, mechanical and thermal properties, the obtained CF‐reinforced BA‐a/PMDA composites exhibited high potential applications in advanced composite materials that required mechanical integrity and self‐extinguishing property. POLYM. COMPOS., 34:2067–2075, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
This work reports a simple approach to prepare toughened 3D-printed polymethacrylate (PMA) composites using surfactant-modified chitosan (SMCS) particles at loadings between 2–10 wt%. Chitosan (CS) is modified with anionic surfactant, sodium dodecyl sulfate, via ionic complexation to facilitate compatibility and dispersion of CS to PMA matrix by non-covalent interactions between the components. The study successfully demonstrates high-accuracy 3D printing of composites with significant improvements in the overall mechanical properties. The composite with the best loading of 8 wt% SMCS shows a tensile modulus of 1.23 ± 0.05 GPa, a tensile strength at 49.8 ± 0.96 MPa, a yield stress at 33.3 ± 1.48 MPa, and a strain-at-failure 10.3 ± 0.61%, which are 45%, 40%, 32%, and 68% higher than neat PMA, respectively. This provides a significant improvement in toughness at 4.92 ± 0.55 MJ m−3 for the composite, 184% higher than that of neat PMA. The marked increase in toughness is due to enhanced filler-matrix interactions which improve the ability of the 3D printed composite to absorb energy under tensile load. The results from this work provide new understandings into the strategies for design and preparation of stereolithography 3D printed materials reinforced with toughening fillers from renewable resources.  相似文献   

19.
《Ceramics International》2020,46(9):13073-13081
Hexagonal boron nitride (h-BN) interfacial coatings were prepared by chemical vapor infiltration (CVI) process from BCl3–NH3–H2 system with different hydrogen contents for improving the toughness of ceramic matrix composites. In this study, the yield of BN was found to be 94.90% without hydrogen present in the reactant system as calculated via FactSage, while it reached 99.95% at the [H2]/[BCl3] ratio of 10 and the [NH3]/[BCl3] ratio of 1, when chemical equilibrium was reached. BN interfacial coatings containing mixture of hexagonal and turbostratic phases were obtained. The deposition rate of coating increased from 18.2 ± 0.4 nm min−1 (β = 0) to 23.0 ± 0.4 nm min−1 (β = 5) with the increase of hydrogen content in reactants, then it significantly decreased when β was 10. Owing to different nucleation amounts on the surface of fibers, samples S2 (β = 2) and S3 (β = 5) exhibited particles with circular shapes and smooth surfaces, while the other coatings presented particles with polygonal shapes and rough surfaces. Moreover, the onset temperature of weight gain of sample S2 was 102 °C higher than that of sample S4, thus indicating the enhancement of the high-temperature oxidation resistance of BN coating.  相似文献   

20.
In the present study, 17 wt % TiN reinforced α-β SiAlON composites were sintered at low temperature by susceptor-assisted microwave heating. The effect of TiN addition on dielectrical properties of starting powders, as well as the influence of sintering temperature on phase evolution, microstructure development and mechanical properties of α/β-SiAlON-TiN composites were investigated. The obtained results showed that TiN addition increased the microwave absorbing properties which is reflected in the peak sintering temperature. Thus, the α:β ratio decreased and mechanical properties were improved, especially the fracture toughness of the composites. Furthermore, an estimate of energy consumption during microwave assisted sintering at the laboratory scale is presented. As a result, the highest values for relative density (97.1%), Vickers hardness (13.35 ± 0.47 GPa), and fracture toughness (7.52 ± 0.54 MPa m1/2) were obtained by microwave sintering for 30 min at 1300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号