首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationships between microstructures and mechanical properties especially strength and toughness of high-entropy carbide based ceramics are reported in this article. Dense (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C (HEC) and its composite containing 20 vol.% SiC (HEC-20SiC) were prepared by spark plasma sintering. The addition of SiC phase enhanced the densification process, resulting in the promotion of the formation of the single-phase high-entropy carbide during sintering. The high-entropy carbide phase demonstrated a fast grain coarsening but SiC particles remarkably inhibited this phenomena. Dense HEC and HEC-20SiC ceramics sintered at 1900 °C exhibits four-point bending strength of 332 ± 24 MPa and 554 ± 73 MPa, and fracture toughness of 4.51 ± 0.61 MPa·m1/2 and 5.24 ± 0.41 MPa·m1/2, respectively. The main toughening mechanism is considered to be crack deflection by the SiC particles.  相似文献   

2.
The influences of different contents ranging 0–15 wt% of high-entropy boride (HEB) (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 on the mechanical properties of SiC-based ceramics using Al2O3-Y2O3 sintering additives sintered by spark plasma sintering process were investigated in this study. The results showed that the introduction of 5 and 10 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 could facilitate the densification and the grain growth of SiC-based ceramics via the mechanism of liquid phase sintering. However, the grain growth of SiC-based ceramics was inhibited by the grain boundary pinning effect with the addition of 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2. The SiC-based ceramics with 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 showed the enhanced hardness (21.9±0.7 GPa) and high toughness (4.88±0.88 MPa·m1/2) as compared with high-entropy phase-free SiC-based ceramics, which exhibited a hardness of 16.6 GPa and toughness of 3.10 MPa·m1/2. The enhancement in mechanical properties was attributed to the addition of higher hardness of HEB phase, crack deflection toughening mechanism, and presence of residual stress due to the mismatch of coefficient of thermal expansion.  相似文献   

3.
In this study, a novel high-entropy carbide-based ceramic cutting tool was developed. The cutting performance of three kinds of high-entropy carbide-based ceramic tools with different mechanical properties for the ISO C45E4 steel were evaluated. Although the pure (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 ceramic cutting tool exhibited the highest hardness of 25.06 ± 0.32 GPa, the cutting performance was poor due to the chipping and catastrophic failure caused by the low toughness (2.25 ± 0.27 MPa m1/2). The (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8–15 vol% cobalt cutting tool with highest fracture toughness (6.37 ± 0.24 MPa m1/2) and lowest hardness (17.29 ± 0.79 GPa) showed the medium cutting performance due to the low wear resistance caused by the low hardness. The (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8–7.7 vol% cobalt cutting tool showed the longest effective cutting life of ∼67 min due to the high wear resistance and chipping resistance caused by the high hardness (21.05 ± 0.72 GPa), high toughness (5.35 ± 0.51 MPa m1/2), and fine grain size (0.60 ± 0.15 μm). The wear mechanisms of the cobalt-containing (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 ceramic cutting tools included adhesive wear and abrasive wear and oxidative wear. This research indicated that the high-entropy carbide-based ceramics with high hardness and high toughness have potential use in the field of cutting tool application.  相似文献   

4.
《Ceramics International》2023,49(7):10280-10286
Using pre-synthesized high-entropy (Ta0.2W0.2Nb0.2Mo0.2V0.2)C carbide as the reinforcing phase, Ti(C0.7N0.3)-based cermets were prepared by pressureless sintering at 1600 °C. The results revealed that due to the solid solution reaction between the mono-carbide and (Ta0.2W0.2Nb0.2Mo0.2V0.2)C, only one set of face-centered-cubic diffraction peaks in XRD was detected in the as-sintered cermets, alongside the typical core-rim structure. Compared to the Ti(C0.7N0.3)-based cermets without high-entropy reinforcing phase, the Vickers hardness was increased from 17.06 ± 0.09 GPa to 18.42 ± 0.33 GPa and the fracture toughness was increased from 9.21 ± 0.31 MPa m1/2 to 12.56 ± 0.23 MPa m1/2 by adding 10 wt% (Ta0.2W0.2Nb0.2Mo0.2V0.2)C. The wear resistance of the cermet was enhanced significantly with increasing (Ta0.2W0.2Nb0.2Mo0.2V0.2)C content. This work provided a potential that the high-entropy carbide can be applied as an effective reinforcing phase in the preparation of high-performance Ti(C0.7N0.3)-based cermets.  相似文献   

5.
《Ceramics International》2022,48(12):17234-17245
The microstructure and mechanical properties of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high-entropy boride (HEB) were first predicted by first-principles calculations combined with virtual crystal approximation (VCA). The results verified the suitability of VCA scheme in HEB studying. Besides, single-phase (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 ceramics were successfully fabricated using boro/carbothermal reduction (BCTR) method and subsequent spark plasma sintering (SPS); furthermore, the effects of different amounts of B4C on microstructure and mechanical properties were evaluated. Due to the addition of B4C and C, all samples formed single-phase solid solutions after SPS. When the excess amount of B4C increased to 5 wt%, the sample with fine grains exhibited superior comprehensive properties with the hardness of 18.1 ± 1.0 GPa, flexural strength of 376 ± 25 MPa, and fracture toughness of 4.70 ± 0.27 MPa m1/2. Nonetheless, 10 wt% excess of B4C coarsened the grains and decreased the strength of the ceramic. Moreover, the nanohardness (34.5–36.9 GPa) and Young's modulus (519–571 GPa) values with different B4C contents just showed a slight difference and were within ranges commonly observed in high-entropy diboride ceramics.  相似文献   

6.
In the current work, fine-grained dual-phase, high-entropy ceramics (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with different phase ratios were prepared from powders synthesized via a boro/carbothermal reduction approach, by adjusting the content of B4C and C in the precursor powders. Phase compositions, densification, microstructure, and mechanical properties were investigated and correlated. Due to the combination of pinning effect and the boro/carbothermal reduction approach, the average grain size (~0.5?1.5 μm) of the dual-phase high-entropy ceramics was roughly one order of magnitude smaller than previously reported literature. The dual-phase high-entropy ceramics had residual porosity ranging from 0.3 to 3.2 % upon sintering by SPS and the material with about 18 vol% boride phase exhibited the highest Vickers hardness (24.2±0.3 GPa) and fracture toughness (3.19±0.24 MPam1/2).  相似文献   

7.
Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C (HTZTNC) was investigated over temperature range of 1400–1600 °C. Results showed improved oxidation resistance of high-entropy carbide compared with individual carbide ceramics. In oxide layer, Ta2O5 and Nb2O5 were found to be dominant phases at 1400 °C, whereas ZrTiO4 and HfTiO4 were main phases obtained at 1500 and 1600 °C. Moreover, these complex dense oxide layer structures on the surface of HTZTNC at high temperature led to excellent oxidation resistance. The observation of Ti-depleted layer at 1500 and 1600 °C after 20 min of oxidation indicated that oxidation mechanism involved outward diffusion of titanium oxide, which was further confirmed by reoxidation experiments. In sum, these findings are promising for future development of high-entropy ultrahigh temperature ceramics with good oxidation resistance.  相似文献   

8.
《Ceramics International》2020,46(11):19008-19014
Powders of high-entropy Hf0.2Ta0.2Ti0.2Nb0.2Zr0.2C (HECZr) and Hf0.2Ta0.2Ti0.2Nb0.2Mo0.2C (HECMo) carbides were fabricated through the reactive high-energy ball milling (R-HEBM) of metal and graphite particles. It was found that 60 min of R-HEBM is adequate to achieve a full conversion of the initial precursors into a FCC solid solution for both compositions. The HECZr powder possesses a unimodal particle size distribution (40% d ≤ 1 μm, 95% d ≤ 10 μm), and the HECMo powder features a bimodal distribution with a slightly larger particle size overall (30% d ≤ 1 μm, 80% d ≤ 10 μm). Bulk high-entropy ceramics with a minor presence of an oxide phase were fabricated through the spark plasma sintering of these high-entropy powders at 2000 °C with a 10 min dwelling time. The HECZr ceramics possess a relative density of up to 94.8%, hardness of 25.7 ± 3.5 GPa, Young's modulus of 473 ± 37 GPa, and thermal conductivity of 5.6 ± 0.1 W/m·K. HECMo ceramics with a relative density of up to 93.8%, hardness of 23.8 ± 2.7 GPa, Young's modulus of 544 ± 48 GPa, and thermal conductivity of 5.9 ± 0.2 W/m·K were also fabricated. A comparison of the properties of the HECs produced in this study and those previously reported is also provided.  相似文献   

9.
A novel high‐entropy carbide ceramic, (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C, with a single‐phase rock salt structure, was synthesized by spark plasma sintering. X‐ray diffraction confirmed the formation of a single‐phase rock salt structure at 26‐1140°C in Argon atmosphere, in which the 5 metal elements may share a cation position while the C element occupies the anion position. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C exhibits a much lower thermal diffusivity and conductivity than the binary carbides HfC, ZrC, TaC, and TiC, which may result from the significant phonon scattering at its distorted anion sublattice. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C inherits the high elastic modulus and hardness of the binary carbide ceramics.  相似文献   

10.
Starting from metal oxides, B4C and graphite, a suite of high-entropy boride ceramics, formulated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, (Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2 and (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 derived from boro/carbothermal reduction at 1600 °C were fabricated by spark plasma sintering at 2000 °C. It was found that the synthetic high-entropy boride crystalized in hexagonal structure and the yield of the targeting phase was calculated to be over 93.0 wt% in the sintered ceramics. Benefitting from the nearly full densification (96.3% ˜ 98.5% in relative density) and the refined microstructure, the products exhibited the relatively high Vickers hardness. The indentation fracture toughness was determined to be comparable with the single transition metal-diboride ceramics. It should be noted that the formation of high-entropy boride ceramics were featured with the relatively high hardness at no expense of the fracture toughness.  相似文献   

11.
A novel (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic was successfully prepared by pressureless sintering at 2200 °C. With increasing content of resin-derived-carbon, the density, and mechanical and thermal properties increased up to a maximum content of 2~4 wt% resin addition, after which further addition was detrimental. All specimens showed high strength (≥347±36 MPa), with the highest value achieving 450±64 MPa, and fracture toughness significantly higher (>20 %) than those of the corresponding monocarbides and Ta0.5Hf0.5C, (Ta1/3Zr1/3Nb1/3)C. The thermal conductivity was approximately equivalent to the lowest value of the corresponding mono-carbides, which was assumed to be due to the lattice distortion effect.  相似文献   

12.
In this work, Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites were reported for the first time. Based on the systematic study of the pyrolysis and solid-solution mechanisms of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C precursor by Fourier transform infrared spectroscopy, TG-MS and XRD, Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC with uniform phase and element distribution were successfully fabricated by precursor infiltration and pyrolysis. The as-fabricated composites have a density and open porosity of 2.40 g/cm3 and 13.32 vol% respectively, with outstanding bending strength (322 MPa) and fracture toughness (8.24 MPa m1/2). The Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC composites also present excellent ablation resistant property at a heat flux density of 5 MW/m2, with linear and mass recession rates of 2.89 μm/s and 2.60 mg/s respectively. The excellent combinations of mechanical and ablation resistant properties make the Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC composites a new generation of reliable ultra-high temperature materials.  相似文献   

13.
In this contribution, the ternary BCN anion systems of high-entropy ceramics (HEC) are consolidated by hot-pressing sintering and the impacts of sintering temperature and the content of amorphous BCN addition on microstructural evolution and mechanical performance were evaluated. Results confirmed that high-entropy, oxide, and BN(C) phases were precipitated for (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)(B, C, N) ceramics after sintering at 1900°C. With the decrease of BCN addition, a new phase of MiB2 (Mi representing the metal atoms) occurred. The Vickers hardness, bending strength, elastic modulus, and fracture toughness of the optimized bulk HECs were investigated, obtained at 24.5 ± 2.3 GPa, 522.0 ± 2.6 MPa, 478.9 ± 11.1 GPa, and 5.36 ± 0.56 MPa m1/2, respectively.  相似文献   

14.
This study aimed to investigate the toughening effects of SiC nanowires (SiCnw) and SiC whiskers (SiCw) on high-entropy carbide based composites prepared at different temperatures (1600°C and 2000°C). At low temperature (1600°C), SiCnw and SiCw maintain their original morphology and properties, and exhibit the good toughening effects. The SiCnw with larger aspect ratio and more curly wires exhibit a much stronger toughening effect on the (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 composites reinforced with 15 vol.% SiCnw, which shows the highest value of fracture toughness about 6.7 MPa∙m1/2. However, at high sintering temperature (2000°C), SiCnw and SiCw are prone to thermal-induced damages, which significantly reduces their mechanical properties, and thus, toughening effects on (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 composites. The addition of SiCw, which have better thermal stability at 2000°C, results in the (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8–15 vol.% SiCw composite exhibiting relatively better fracture toughness, about 3.7 MPa∙m1/2. Based on the results of the current study, the critical influence of SiCnw and SiCw on the toughening of (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 composites is highly dependent on their high-temperature thermal stability.  相似文献   

15.
A nano dual-phase powder with great sinterability was synthesized by molten-salt assisted borothermal reductions at 1100 °C using B, ZrO2, HfO2, Ta2O5, Nb2O5 and TiO2 powders as raw materials. Single-phase (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy ceramic was prepared by spark plasma sintering using the as-synthesized nano dual-phase powder. Oxidation behavior of the (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic was investigated over the range of 30–1400 °C in air and the result indicated that the rapid oxidation of ceramic began at 1300 °C. The phenomenon could be ascribed to the rapid volatilization of B2O3 from oxide scale. A layered structure was formed at the cross section of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic after oxidation. The relationship between partial pressures of gaseous metal oxides and oxygen partial pressures was calculated, which inferred that the formation of layered structure could be ascribed to the active oxidation of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2, the generation of gaseous metal oxides, their outward diffusion and further oxidation.  相似文献   

16.
Five single-phase WB2- and MoB2-containing high-entropy borides (HEBs) have been made via reactive spark plasma sintering of elemental boron and metals. A large reactive driving force enables the full dissolution of 10−20 mol. % WB2 to form dense, single-phase HEBs, including (Ti0.2Zr0.2Hf0.2Mo0.2W0.2)B2, (Ti0.2Ta0.2Cr0.2Mo0.2W0.2)B2, (Zr0.2Hf0.2Nb0.2Ta0.2W0.2)B2, and (Zr0.225Hf0.225Ta0.225Mo0.225W0.1)B2; the successful fabrication of such single-phase WB2-containing HEBs has not been reported before. In the processing science, this result serves perhaps the best example demonstrating that the phase formation in high-entropy ceramics can strongly depend on the kinetic route. A scientifically interesting finding is that HEBs containing softer WB2 and/or MoB2 components are significantly harder than (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 (with harder binary boride components). This exemplifies that high-entropy ceramics can achieve unexpected properties.  相似文献   

17.
The single-phase formation and related elastic properties of (TiZrNbTaMo)C with one equimolar and twenty non-equimolar systems have been investigated by first-principles calculation. Based on the calculation results, the “composition-structure-elastic properties” correlation heatmapping predicts that Ti element is favorable for increment of hardness and Young’s modulus, while Mo element shows contrary tendency. The (TixZr2Nb2Ta2Mo4-x)C10-y (x = 1, 2, 3) have been fabricated by carbothermal reduction assisted hot-pressing sintering. The obtained experimental results validate the prediction trend of first-principles calculation. The optimization hardness and Young’s modulus is achieved at (Ti3Zr2Nb2Ta2Mo1)C10-y, and the corresponding value is 27.1 ± 0.6 GPa at 9.8 N and 490 ± 5 GPa, respectively. Noteworthily, the single-phase formation mainly depends on configuration entropy. The equimolar (Ti2Zr2Nb2Ta2Mo2)C10-y exhibits a single-phase with homogeneous chemical composition, but some element segregation can be found in the other two non-equimolar samples sintered at 2100 ℃.  相似文献   

18.
The formation possibility of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic (HHC-1) was first analyzed by the first-principles calculations, and then, it was successfully fabricated by hot-pressing sintering technique at 2073 K under a pressure of 30 MPa. The first-principles calculation results showed that the mixing enthalpy and mixing entropy of HHC-1 were −0.869 ± 0.290 kJ/mol and 0.805R, respectively. The experimental results showed that the as-prepared HHC-1 not only had an interesting single rock-salt crystal structure of metal carbides but also possessed high compositional uniformity from nanoscale to microscale. By taking advantage of these unique features, it exhibited extremely high nanohardness of 40.6 ± 0.6 GPa and elastic modulus in the range from 514 ± 10 to 522 ± 10 GPa and relatively high electrical resistivity of 91 ± 1.3 μΩ·cm, which could be due to the presence of solid solution effects.  相似文献   

19.
Single phase novel (Ti0.2W0.2Ta0.2Mo0.2V0.2)C0.8 high entropy carbide (HEC) compacts were successfully synthesized by reactive spark plasma sintering of ball milled metal-carbon elemental mixture at temperatures of 1400−1800 °C. X-ray diffraction and element distribution maps indicated single phase carbide formation with lattice parameter ranging from 4.307 Å to 4.312 Å with small amount of TiO2. X-ray energy dispersive spectroscopy (EDS) mapping showed uniform distribution of the transition metals in the carbide phase. The microhardness, elastic modulus, fracture toughness, electrical resistivity and thermal expansion coefficient (25 °C–600 °C) of the compact sintered at 1800 °C were found to be 25.8 ± 2.8 GPa, 461 ± 36 GPa, 3.7 ± 0.4 MPa.m1/2, 7 × 10−4 Ω/m2 and 7 × 10-6 K−1 respectively.  相似文献   

20.
Herein the ultrafine-grained (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy diboride ceramics were successfully fabricated by high-pressure sintering technology for the first time. The results showed that the grain size, relative density, and Vickers hardness of the as-fabricated samples all increased gradually with increasing sintering temperatures from 1373 K to 1973 K. The relative density and mean grain size of the as-sintered samples at 1973 K were 97.2% and 684 nm, respectively, and simultaneously they exhibited excellent comprehensive mechanical properties, combining a Vickers hardness of 26.2 GPa and a fracture toughness of 5.3 MPa·m1/2, which were primary attributed to the fine grain strengthening mechanism and microcrack deflection toughening mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号