首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of small quantities of aluminum oxide (Al2O3) to 8 mol% yttria-stabilized zirconia (8YSZ) benefits conventional sintering by acting as a sintering aid and altering grain growth behavior. However, it is uncertain if these benefits observed during conventional sintering extend to flash sintering. In this work, nanoscale films of Al2O3 are deposited on 8YSZ powders by particle atomic layer deposition (ALD). The ALD-coated powders were flash sintered using voltage-to-current control and current rate experiments. The sintering behavior, microstructural evolution, and ionic conductivities were characterized. The addition of Al2O3 films changed the conductivity of the starting powder, effectively moving the flash onset temperature. The grain size of the samples flashed with current rate experiments was ~65% smaller than that of conventionally sintered samples. Measurement of grain size and estimates of sample density as a function of temperature during flash sintering showed that small quantities of Al2O3 can enhance grain growth and sintering of 8YSZ. This suggests that Al2O3 dissolves into the 8YSZ grain boundaries during flash sintering to form complexions that enhance the diffusion of species controlling these processes.  相似文献   

2.
《Ceramics International》2022,48(24):36764-36772
In this study, the influence of alternating current (AC) electric field on flash sintering and microstructural evolution of alumina–zirconia (Al2O3–ZrO2) composite was systematically investigated at furnace temperature of 800 °C. Compared with direct current (DC) electric field, AC electric field not only promoted densification and grain growth of Al2O3–ZrO2 composite, but also improved the uniformity of microstructure of ceramics. Grain size of AC flash-sintered samples was found to be inversely related to electric field, and positive correlation was observed with current density limit. Dense Al2O3–ZrO2 composite ceramic was fabricated via AC flash sintering under 60 mA mm?2 at low furnace temperature within 120 s, and as-sintered samples exhibited relatively good mechanical properties. The mechanism involving synergistic effect of Joule heating and defects generation under the influence of electric field was proposed to explain rapid densification during AC flash sintering. These results indicate the feasibility of preparation of dense composite ceramic with homogeneous microstructure via AC flash sintering.  相似文献   

3.
《Ceramics International》2021,47(19):27267-27273
The flash sintering behavior of Al2O3/reduced graphene oxide (rGO) composites was investigated. rGO was used as a composite component and a conductive additive. Under the electric fields of 250–400 V cm−1, the flash event occurred at extremely low temperatures of 236–249 °C. The current density limit played a significant role in the degree of densification. A larger current density resulted in a higher density of the sample. However, current densities larger than 33.33 A cm−2 resulted in broken samples because of the localization of high current density coupled with the formation of hot spots. Flash sintering at a furnace temperature of 800 °C, electric field of 300 V cm−1 and current density limit of 33.33 A cm−2 produced nearly completely dense Al2O3/rGO composites. In addition to the current limit, the furnace temperature is also a key parameter that controls the degree of densification to achieve “safe” flash sintering.  相似文献   

4.
In this study, microwave hybrid sintering and conventional sintering of Al2O3- and Al2O3/ZrO2-laminated structures fabricated via aqueous tape casting were investigated. A combination of process temperature control rings and thermocouples was used to measure the sample surface temperatures more accurately. Microwave hybrid sintering caused higher densification and resulted in higher hardness in Al2O3 and Al2O3/ZrO2 than in their conventionally sintered counterparts. The flexural strength of microwave-hybrid-sintered Al2O3/ZrO2 was 70.9% higher than that of the conventionally sintered composite, despite a lower sintering temperature. The fracture toughness of the microwave-hybrid-sintered Al2O3 increased remarkably by 107.8% despite a decrease in the relative density when only 3 wt.% t-ZrO2 was added. The fracture toughness of the microwave-hybrid-sintered Al2O3/ZrO2 was significantly higher (247.7%) than that of the conventionally sintered composite. A higher particle coordination and voids elimination due to the tape casting and the lamination processes, the microwave effect, the stress-induced martensitic phase transformation, and the grain refinement phenomenon are regarded as the main reasons for the mentioned outcomes.  相似文献   

5.
Lead-free Bi0.5Na0.5TiO3 piezoelectric ceramics were successfully prepared by reactive flash sintering of Bi2O3-NaCO3-TiO2 mixed powders, where phase transformation and densification occurred simultaneously. The influence of electric field strength, current density and holding time at constant current state on the phase transformation and densification were investigated. The current density had a significant influence on the extent of phase transformation and densification. The holding time had no influence on the phase transformation, but had an important effect on crystallinity of sample. The sintered bulks exhibited the maximum polarization Pm of 16.8 μC/cm2, remanent polarization Pr of 9.6 μC/cm2, coercive field Ec of 29 kV/cmm, maximum electric-field-induced strain of 0.053 %, and piezoelectric coefficient d33 of 85 pC/N. The reactive flash sintering can prepare the dense and single-phase ceramics from multiphase precursor powders in one step of flash, providing a new way for rapid production of ceramic materials.  相似文献   

6.
《Ceramics International》2016,42(3):4290-4297
Ultra-fine grained Al2O3 was fabricated by in-situ spark plasma sintering (SPS) process directly from amorphous powders. During in-situ sintering, phase transformation from amorphous to stable α-phase was completed by 1100 °C. High relative density over 99% of in-situ sintered Al2O3 was obtained in the sintering condition of 1400 °C under 65 MPa pressure without holding time. The grain size of in-situ sintered Al2O3 body was much finer (~400 nm) than that of Al2O3 sintered from the crystalline α-Al2O3 powders. For in-situ sintered Al2O3 from amorphous powders, we observed a characteristic microstructural feature of highly elongated grains in the ultra-fine grained matrix due to abnormal grain growth. Moreover, the properties of abnormally grown grains were controllable. Fracture toughness of in-situ sintered Al2O3 with the elongated grains was significantly enhanced due to the self-reinforcing effect via the crack deflection and bridging phenomena.  相似文献   

7.
The nearly fully dense ultra-high pure (>99.99%) α-Al2O3 ceramics were prepared by flash sintering at the furnace temperature of 1300°C. Compared with the samples sintered at 1300 and 1650°C without electrical field, the flash-sintered samples exhibited remarkably improved density and finer grains. The flash-sintered samples also exhibited high hardness, which is even higher than that of the hot-pressed sample. Therefore, it is believed that flash sintering could be an effective technique for the preparation of ultra-high pure alumina ceramics.  相似文献   

8.
Preparation of 3YSZ/Al2O3-platelet composites always requires high temperature, long duration, and/or high pressure. Herein, 3YSZ/Al2O3-platelet composites are prepared at low temperature of 492°C-645°C in 30 seconds by flash sintering under the electric field of 300-800 V/cm. The influence of electric field and current limit on the densification and grain growth of composites is investigated. The onset temperature for flash sintering is determined by electric field, which is decreased with increasing the electric field. Under the constant electric field, the current limit has a great effect on the density and grain size of composite. The flash-sintered 3YSZ/Al2O3-platelet composites exhibit relatively high hardness and elastic modulus. Both Joule heating and defects generation are proposed to be responsible for the rapid densification in flash sintering. This work demonstrates the feasibility of employing the flash sintering to prepare ceramic composites with fine grain size.  相似文献   

9.
《Ceramics International》2017,43(15):12154-12161
We fabricated CuO/Al2O3 green compacts from plate-like Al2O3 and granular CuO powders by multi-press forming and investigated the alumina orientation using Lotgering's method. The results showed that Al2O3 particles preferentially aligned perpendicular to the pressure direction and the orientation degree increased as the forming pressure was increased. We proposed a model describing the movement of the alumina particles to explain the pressure effect on their orientation. The orientation calculation was in good agreement with those by Lotgering's method. Furthermore, we prepared the CuAlO2 compacts by regular or spark plasma sintering (SPS). However, the compacts sintered by SPS exhibited higher orientation degree and density than those produced by regular sintering. The electrical conductivity values of the orientation-controlled compacts sintered by SPS reached 770 S m−1 at 928 K, which was close to that of CuAlO2 single crystal. The power factor of the CuAlO2 compacts with highest orientation degree is as high as 5.95 × 10−5 W m−1 K−1 at 928 K. Therefore, we can conclude that orientation control is an effective method to enhance the thermoelectric performance of compact polycrystalline CuAlO2 bulks.  相似文献   

10.
《Ceramics International》2022,48(21):31679-31685
In order to improve the sintering of SiC, mixtures of Al2O3 and Y2O3 powders are commonly included as sintering additives. The aim of this work was to use mechanically alloyed Al2O3–Y2O3 mixtures as sintering additives to promote liquid phase sintering of SiC using spark plasma sintering. The results showed that milling reduced the particle size of the powders and led to the formation of complex oxide phases (YAP, YAM, and YAG) at low temperatures. As the ball milling time increased, the mass loss of specimens sintered with mechanically alloyed Al2O3–Y2O3 mixtures decreased, and accordingly the relative density increased. However, the hardness and flexural strength of sintered SiC specimens first increased and then decreased. Because the specimens prepared with oxides milled for a long time contained too much YAG/YAP and accordingly too much liquid at sintering temperature. This negatively affected the mechanical properties of the SiC specimens because of the increased volume of the complex oxide phases, which have inferior mechanical properties to SiC, in the sintered specimens. When the ball milling time was 6 h, the hardness (24.02 GPa) and flexural strength (655.61 MPa) of the SiC specimens reached maximum values.  相似文献   

11.
《Ceramics International》2022,48(5):6016-6023
In the preparation process for advanced ceramics, how to reduce the sintering temperature, shorten the processing time and refine grains is the key to obtaining high-performance ceramic materials. The flash sintering (FS) provides an effective method to solve this issue. Here, (Zr + Ta) co-doped TiO2 colossal permittivity ceramics were successfully fabricated by conventional sintering (CS) and flash sintering under electric fields from 500 V/cm to 800 V/cm. The flash behavior, sintered crystal structure and microstructure, dielectric properties, and varistor characteristics were systematically investigated. The effects of the applied electric fields on the above behaviors were discussed. The results show that flash sintering can reduce the sintering temperature by 200 °C, decrease the processing time by 10 times and reduce grain sizes in TiO2 ceramics. All sintered samples were single rutile structures. Flash sintering led to similar electrical properties to conventional sintering. In the flash-sintered samples, with increasing the electric field, the permittivity of co-doped TiO2 ceramics increased at a frequency of 103–104 Hz. The flash-sintered sample under an electric field of 800 V/cm possessed the best comprehensive properties, a dielectric permittivity of >105, a dielectric loss of ~0.77 at 103 Hz, and a nonlinear coefficient of 5.2.  相似文献   

12.
《Ceramics International》2020,46(4):4762-4770
Herein, porous calcium hexaluminate ceramics that contain pores exhibiting multiple morphologies were fabricated via in situ reaction sintering using α-Al2O3 powders and pre-fired CaO/Al2O3 pellets. The results indicated that the composition of the pre-fired CaO/Al2O3 pellets significantly affected the pore morphology, reaction-diffusion mechanisms, sintering behaviour and properties of the porous CA6 ceramics. For the specimens containing low CaO/Al2O3-ratio (0.37) pellets, the main reaction occurred by solid state diffusion, i.e. ion diffusion through the solid reactant phase, which resulted in a slow process and low CA6 formation rate at an elevated sintering temperature. With higher CaO/Al2O3-ratio (0.57) pellets, large-sized pores were observed because of transient liquid phase diffusion during the sintering process. The transient liquid phase diffusion effect increased the porosity of the porous ceramics and promoted the formation of a large number of plate-like CA6 grains in the walls of the pores, enhancing their mechanical properties and high-temperature performance. The porous CA6 ceramics containing high CaO/Al2O3-ratio (0.57) pellets sintered at 1700 °C exhibited high open porosity (55.88%), low thermal conductivity and excellent high-temperature performance.  相似文献   

13.
高纯超细氧化铝粉的常压烧结与高压烧结   总被引:1,自引:0,他引:1       下载免费PDF全文
孙致平  滕元成  齐晓敏  陈堃  鲁伟员 《化工学报》2007,58(11):2932-2936
以高纯超细α-Al2O3粉为原料,采用常压、高压烧结制备了高纯Al2O3陶瓷。研究表明,在乙醇溶剂中高速球磨可显著降低Al2O3粉料的平均颗粒尺寸,提高粉料的比表面积与烧结活性;在4.5 GPa、1230℃高压烧结30 min,制备了相对密度达98.71%的无烧结助剂掺杂的Al2O3陶瓷;与常压烧结相比,高压烧结可显著降低烧结温度,提高传质速率,大幅度缩短烧结时间,达到快速、低温烧结的效果;由于相对较低的烧结温度,掺杂微量MgO的Al2O3陶瓷在高压烧结中未出现液相,MgO对烧结致密化及Al2O3晶粒生长抑制几乎无影响。  相似文献   

14.
While monazite (LaPO4) does not flash sinter even at high fields of 1130 V/cm and temperatures of 1450°C, composite systems of 8YSZ–LaPO4 and Al2O3–LaPO4 have been found to more readily flash sinter. 8YSZ added to LaPO4 greatly lowered the furnace temperature for flash to 1100°C using a field of only 250 V/cm. In these experiments, -Al2O3 alone also did not flash sinter at 1450°C even with high fields of 1130 V/cm, but composites of Al2O3–LaPO4 powders flash sintered at 900-1080 V/cm at 1450°C. Alumina–monazite (Al2O3–LaPO4) composites with compositions ranging from 25 vol% to 75 vol% Al2O3 were flash sintered with current limits from 2 to 25 mA/mm2. Microstructures were evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A eutectic microstructure was observed to form in all flash sintered Al2O3–LaPO4 composites. With higher power (higher current limits), eutectic structures with regular lamellar regions were found to coexist in the channeled region (where both the current and the temperature were the highest) with large hexagonal-shaped -Al2O3 grains (up to 75 m) and large irregular LaPO4 grains. With lower power (lower current limits), an irregular eutectic microstructure was dominant, and there was minimal abnormal grain growth. These results indicate that Al2O3–LaPO4 is a eutectic-forming system and the eutectic temperature was reached locally during flash sintering in regions. These eutectic microstructures with lamellar dimensions on the scale of 100 nm offer potential for improved mechanical properties.  相似文献   

15.
A simple and low-energy-consuming approach for preparing ceramic nuclear waste forms is greatly preferred for disposal of ever-increasing amounts of radioactive nuclear wastes. Herein, simulated radionuclide Ce could be rapidly incorporated into Gd2Zr2O7 ceramic via flash sintering technique. Under an electric field of 250 V/cm, Gd2Zr2−xCexO7 (0.0 ≤x ≤ 1.2) waste forms with a single phase of defect-fluorite were flash sintered at relatively low temperatures of 889–997 °C in 60 s. The onset temperature of flash sintering was decreased with the enhancement of Ce content. Furthermore, the density and grain size of Gd2Zr2−xCexO7 waste forms were increased with the increase of the current limit. The nearly full dense Gd2Zr2−xCexO7 waste forms were flash sintered at a current limit of 200 mA. The normalized leaching rates of Gd, Ce, and Zr in Gd2Zr0.8Ce1.2O7 after 28 d were 6.5475 × 10−5, 1.1624 × 10−7, and 1.1613 × 10−7 g·m−2·d−1, respectively, which exhibited a good chemical durability.  相似文献   

16.
《Ceramics International》2023,49(19):31405-31411
In the present work, the dielectric properties of cold sintered alumina (Al2O3) reinforced with 20–30 wt% HDPE composite was investigated. The Al2O3-HDPE composites were successfully processed via cold sintering at extremely low temperature in the range of 80–120 °C for 120 min with the application of uniaxial pressure of 500 MPa under vacuum. In fact, cold sintering is a promising method to consolidate ceramic-polymer composites with very large difference in melting points and other thermo-physical/chemical properties. In the present work, high dielectric constant (ε’) of 11.73 and low dielectric loss (tanδ) of 0.0076 measured for Cold Sintering Processed (CSPed) Al2O3-20HDPE and a little low ε’ of 9.13 and low tanδ of 0.0066 was evident for CSPed-Al2O3-30HDPE at 1 MHz. Such differences in the dielectric properties of the Al2O3-20,30 HDPE composites depend on the crystallite size, dangling bond density and microstrain of the materials. Increase in ε’ with temperature is noticed for CSPed-A20H. Moreover, for CSPed-A20H at 1 MHz the temperature variation of dielectric constant (TCC) of 186.94 ppm/°C (or 0.018694 %/°C) was estimated and it reflects a marginal variation of ε’ with temperature. The coefficient of thermal expansion (CTE) of 87.25 × 10−6 °C−1 and 109.3 × 10−6 °C−1 was estimated for CSPed-A20H and CSPed-A30H, respectively. Overall, the cold sintered Al2O3-20HDPE composites exhibited comparable or better dielectric properties than Al2O3 based materials (as reported in the literature) processed by conventional sintering or cold sintering processes.  相似文献   

17.
In a previous part, the rheological behaviour of silicon nitride aqueous slips was optimized by dispersing with TMAH up to pH 11·5 using different mixing procedures and including different concentrations of sintering aids (Al2O3 and Y2O3). In this part, the obtention of pressureless sintered silicon nitride bodies by colloidal filtration techniques is studied. The kinetics of the different compositions is studied for both slip casting and pressure casting. The pressure casting kinetics is up to 20 times faster than that of slip casting, which allows the scale-up of the process for a low cost production, The obtained green density is slightly >58%th for slip casting and 57–55%th for pressure casting, depending on the applied pressure. This small difference does not influence sintered density. At 1750°C/2h, a final density around 96%th is obtained. The sintering conditions are studies considering the time, temperature, atmosphere and sintering bed. The best results are obtained when the sintering bed has the same composition to that of the sample to be sintered. The room temperature properties of the sintered materials show a KIC value higher than 6 MPam1/2, comparable to those found in the literature for pressure sintered materials.  相似文献   

18.
《Ceramics International》2020,46(12):19731-19737
Reduced graphene oxide (rGO) nanosheets/alumina (Al2O3) composite ceramics were fabricated by hot-pressing sintering. The density, porosity, microhardness, flexural strength and complex permittivity were investigated to study their mechanical and dielectric properties. The results revealed that the rGO nanosheets were uniformly distributed in the Al2O3 matrix and that the composite ceramics were highly dense at 3.67–3.99 g/cm3. Due to low rGO hardness and elevated porosity, the microhardness exhibits a decreasing trend as the rGO content increases. The flexural strength first increased and then decreased with the escalation of rGO content, and the highest strength of 313.75 MPa was obtained at 3 wt%, increasing by 37.61% relative to that of the hot-pressing sintered Al2O3 ceramic. Owing to the enhanced interfacial polarization, dipole polarization, polarization relaxation loss and conductance loss, the real part and imaginary part of complex permittivity increase from 10.40 to 52.73 and from 0.08 to 28.86 as the rGO content rose from 0 wt% to 4 wt%, respectively.  相似文献   

19.
Abstract

Fully densified Al2O3 ceramics with fine grain size were obtained by pulsed electric current sintering through a two-step heating profile (referred to as TS-PECS). Highly transparent Al2O3 polycrystals with fine grain size (400 nm) were successfully fabricated by the TS-PECS process, namely, sintering at 1000°C for 1 h and followed at 1200°C for 20 min under uniaxial pressure of 100 MPa. Effects of the first step temperature and heating rate were discussed for bulk density, grain size and transparency. The temperature in the first step strongly affects densification and grain growth of Al2O3. On the other hand, heating rate, even of 100 K min?1, in TS-PECS does not give significant influences on densification and grain growth of Al2O3. Inline transmittance at 640 nm in wavelength normalised to 1 mm in thickness is increased by decreasing heating rate even in TS-PECS.  相似文献   

20.
Three‐phase ceramic composites constituted from equal volume fractions of α‐Al2O3, MgAl2O4 spinel, and cubic 8 mol% Y2O3‐stabilized ZrO2 (8YSZ) were flash‐sintered under the influence of DC electric fields. The temperature for the onset of rapid densification (flash sintering) was measured using a constant heating rate at fields of 50‐500 V/cm. The experiments were carried out by heating the furnace at a constant rate. Flash sintering occurred at a furnace temperature of 1350°C at a field of 100 V/cm, which dropped to 1150°C at a field of 500 V/cm. The sintered densities ranged from 90% to 96%. Higher electric fields inhibited grain growth due to the lowering of the flash temperature and an accelerated sintering rate. During flash sintering, alumina reacted with the spinel phase to form a high‐alumina spinel solid solution, identified by electron dispersive spectroscopy and from a decrease in the spinel lattice parameter as measured by X‐ray diffraction. It is proposed that the solid solution reaction was promoted by a combination of electrical field and Joule heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号