首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of fabricating a BN matrix/fiber interphase of SiC/SiC composites via electrophoresis deposition (EPD) was investigated based on the simplicity and non-destructiveness of the process and the excellent interfacial modification effects of BN. The BN suspension and SiC fiber surface properties were both adjusted to generate suitable conditions for the EPD process of the BN interphase. Next, the deposition dynamics and mechanism were studied under different deposition voltages and time, and the relationship between the deposition morphology of the BN interphase and mechanical properties of the fabricated mini SiC/SiC composites were also discussed. After oxidation at high temperature (600–1000 ℃), the mechanical properties of the mini SiC/SiC composites were studied to verify the oxidation resistance effect of the EPD-deposited BN interphase, whose oxidation resistance mechanism was briefly analyzed as well.  相似文献   

2.
Matrix modification is of great significance for the densification of CVI-SiC/SiC, as well as the improvement of self-healing and oxidation resistance. A eutectic component of Y2O3-Al2O3-SiO2 system modified with CaO (CYAS) was used in this study to modify SiC/SiC at 1400 °C. The oxidation behaviour of the composites was investigated under dry/water oxygen atmosphere at 900 °C and 1300 ℃. Compared to the relatively dense SiC/SiC, the modified SiC/SiC showed a slight increase in flexural strength and fracture toughness at room temperature, as well as a significant increase in oxidation resistance and densification. Our work provides a low-cost, simple-to-operate, short-cycle densification method for CVI-SiC/SiC composites that increases their oxidation resistance without compromising their mechanical properties at room temperature.  相似文献   

3.
Non-oxide ceramic matrix composites (CMC) based on SiC fibers with SiC matrix were fabricated by polymer infiltration and pyrolysis (PIP) and characterized regarding their microstructural features and their mechanical properties. The fiber preform was made using winding technology. During the winding process, the SiC fiber roving was impregnated by a slurry containing SiC powder and sintering additives (Y2O3, Al2O3 and SiO2). This already helped to achieve a partial matrix formation during the preform fabrication. In this way, the number of PIP cycles to achieve composites with less than 10% open porosity could be reduced significantly. Additionally, damage-tolerant properties of the composites were obtained by an optimal design of the matrix properties although only uncoated fibers were used. Finally, composites with a strength level of about 500 MPa and a damage-tolerant fracture behavior with about 0.4% strain to failure were obtained.  相似文献   

4.
SiC ceramic coating, for prevention of C/C composites against oxidation, was prepared by pressure-less reactive sintering to investigate the oxidation behaviour in an oxidising environment containing water vapour at 1773 K. The experimental results demonstrated that the oxidation behaviour of porous SiC ceramics could be divided into two stages, following the parabolic model, which was attributed to the variation in the contact area involved in the oxidation reactions. During the entire oxidation process, water vapour could accelerate the oxidation of the SiC ceramics, according to the weight change. By first-principle calculations, the accelerated oxidation rate of the SiC ceramics was attributed to weakened Si–O and Al–O bonds in the formed glassy scale, which were caused by hydroxide radicals from the water. Atomic thermal motions at high temperature could lead to the breakage of the network structure, promoting the diffusion and solution of oxidising gases. When the as-prepared SiC ceramics were applied as anti-oxidative coatings for the C/C composites, the SiC ceramic coating and C/C matrix could be sealed and protected faster per unit time, because water vapour was beneficial to the formation of a glassy layer. The weight loss of the C/C matrix could be attributed to unsealed microcracks inside the SiC coating in the initial stage.  相似文献   

5.
The degradation of SiC‐based ceramic matrix composites (CMCs) in conditions typical of gas turbine engine operation proceeds via the stress rupture of fiber bundles. The degradation is accelerated when oxygen and water invade the composite through matrix microcracks and react with fiber coatings and the fibers themselves. We review micromechanical models of the main rate‐determining phenomena involved, including the diffusion of gases and reaction products through matrix microcracks, oxidation of SiC (in both matrix and fibers) leading to the loss of stiffness and strength in exposed fibers, the formation of oxide scale on SiC fiber and along matrix crack surfaces that cause the partial closure of microcracks, and the concomitant and synergistic loss of BN fiber coatings. The micromechanical models could be formulated as time‐dependent coupled differential equations in time, which must be solved dynamically, e.g., as an iterated user‐defined material element, within a finite element simulation. A paradigm is thus established for incorporating the time‐dependent evolution of local material properties according to the local environmental and stress conditions that exist within a material, in a simulation of the damage evolution of a composite component. We exemplify the calibration of typical micromechanical degradation models using thermodynamic data for the oxidation and/or volatilization of BN and SiC by oxygen and water, mechanical test data for the rate of stress rupture of SiC fibers, and kinetic data for the processes involved in gas permeation through microcracks. We discuss approaches for validating computational simulations that include the micromechanical models of environmental degradation. A special challenge is achieving validated predictions of trends with temperature, which are expected to vary in a complex manner during use.  相似文献   

6.
The mechanical behavior and oxidation resistance of SiC/SiC-SiBC composites were studied in this work. According to the debonding criterion of He and Hutchinson, the debonding could occur at the BN interphase, which insures that the fibers can well play the strengthening and toughening performance. The oxidation resistance of SiC/SiC-SiBC composites consisting of SiC fibers with thermal expansion coefficients (CTE) of 5.1 × 10?6 K?1 and 4.0 × 10?6 K?1 was compared. The composites consisting of SiC fibers with higher CTE show slight weight changes at 800, 1000, and 1200 °C, and the corresponding strength retention ratios are 109.6%, 103.2% and 102.9%, exhibiting excellent oxidation resistance. The CTE of composites consisting of SiC fibers with higher CTE matches well with the CTE of SiC coating, so rarely no cracks can be formed in the coating, which inhibits the inward diffusion of oxidizing medium and leads to high strength retention ratios after oxidation tests.  相似文献   

7.
The potentials and limitations of a halide-activated pack cementation process on SiC/SiC Ceramic Matrix Composites for the development of bond coats as part of environmental barrier coating (EBCs) systems were investigated. Different pack compositions using chromium, aluminum and alloys of these elements were tested and the kinetics of coating formation were examined in addition to their microstructure. The results and their analogy to diffusion couples were discussed and it was shown that coating elements which form silicides and carbides are promising candidates for coatings deposited on SiC/SiC via pack cementation. Based on such considerations a two-step pack cementation was proposed, which used chromium, one of the suitable elements, in a first step, to finally achieve an alumina-forming coating. The oxidation resistance of the developed coating was tested via thermogravimetric analysis and compared to the uncoated material. The coating protected the fiber-matrix interface of the SiC/SiC Ceramic Matrix Composites from oxidation.  相似文献   

8.
SiCf/SiC composites with BN interface were prepared through isothermal-isobaric chemical vapour infiltration process. Room temperature mechanical properties such as tensile, flexural, inter-laminar shear strength and fracture toughness (KIC) were studied for the composites. The tensile strength of the SiCf/SiC composites with stabilised BN interface was almost 3.5 times higher than that of SiCf/SiC composites with un-stabilised BN interphase. The fracture toughness is similarly enhanced to 23 MPa m1/2 by stabilisation treatment. Fibre push-through test results showed that the interfacial bond strength between fibre and matrix for the composite with un-stabilised BN interface was too strong (>48 MPa) and it has been modified to a weaker bond (10 MPa) due to intermediate heat treatment. In the case of composite in which BN interface was subjected to thermal treatment soon after the interface coating, the interfacial bond strength between fibre and matrix was relatively stronger (29 MPa) and facilitated limited fibre pull-out.  相似文献   

9.
《Ceramics International》2017,43(11):8208-8213
In order to improve the oxidation behavior of carbon/carbon composites in a wide range of temperature, a new SiC/glaze-precursor coating was developed.The SiC layer was produced by slurry and sintering, while the glaze precursor layer was prepared by slurry and drying. The microstructures and phase compositions of the coating were analyzed by SEM and XRD, respectively. The oxidation resistance of the coated composites was investigated using both isothermal and temperature-programmed thermogravimetric analysis in the temperature range from room temperature to 1600 °C. The results showed that the oxidation behavior of the coating was mainly controlled by the diffusion of oxygen during the test.The coating showed excellent oxidation resistance and self-healing ability in a wide range of temperature.  相似文献   

10.
The investigation of several parameters during fiber push-out micromechanical tests on the interfacial shear strength (ISS) of the BN interphase in SiCf/SiC ceramic matrix composites (CMC) was undertaken to optimize experimental work. The SiCf/SiC composites—candidate materials for jet engine components—were manufactured with varying fiber types and interlayer thicknesses. Experimental parameters explored included analyzing the effect of sample thickness on the success rate of micromechanical tests, the effect of fiber local environment whether at tow-level (intra-tow variability in ISS) or CMC architecture-level (inter-tow variability), the effect of nanoindenter flat-punch tip size, and the effect of the interphase thickness itself. Over 1000 fiber push-outs were performed and analyzed in this work—with data presented as cumulative distribution functions to compare and contrast samples. It was found that the ISS measured was strongly and statistically influenced by the underlying fiber roughness (interphase adherence), as well as its local fiber environment (e.g., number of nearest neighbors) only if the thickness of the interphase itself surpassed a threshold of 200 nm. Finally for thinner interphases, limited value was added to the CMC as the ISS measured was high and there was no effect from any local environment.  相似文献   

11.
Polymer infiltration pyrolysis (PIP) was used to prepare carbon fiber-reinforced silicon carbide (C/SiC) composites, and chemical vapor deposition (CVD) was employed to fabricate SiC coating. The oxidation behavior at 1700?°C and the flexural property at 1200?°C were tested. SiC coating exerted remarkable oxidation effects on PIP-C/SiC composites. In the absence of coating, PIP-C/SiC composites lost 29.2% of its mass, with merely 6.74% of the original flexural strength retained. In contrast, CVD-SiC coated PIP-C/SiC composites had the mass loss of 10.2% and the flexural strength retention ratio of 23.4%. In high-temperature tests, SiC coating played an important role in the flexural strength of PIP-C/SiC composites. The flexural strength of uncoated composites became 330.7?MPa, and that of coated ones reduced from 655.3 to 531.2?MPa.  相似文献   

12.
To improve the wear resistance of SiC coating on carbon/carbon (C/C) composites, SiC nanowires (SiCNWs) were introduced into the SiC wear resistant coating. The dense SiC nanowire-reinforced SiC coating (SiCNW-SiC coating) was prepared on C/C composites using a two-step method consisting of chemical vapor deposition and pack cementation. The incorporation of SiCNWs improved the fracture toughness of SiC coating, which is an advantage in wear resistance. Wear behavior of the as-prepared coatings was investigated at elevated temperatures. The results show that the wear resistance of SiCNW-SiC coating was improved significantly by introducing SiC nanowires. It is worth noting that the wear rate of SiCNW-SiC coating was an order of magnitude lower than that of the SiC coating without SiCNWs at 800 °C. The wear mechanisms of SiCNW-SiC coating at 800 °C were abrasive wear and delamination. Pullout and breakage of SiC grains resulted in failure of SiC coating without SiCNWs at 800 °C.  相似文献   

13.
The stressed-oxidation behavior of 2D CVI SiC/BN/SiC composites was studied at intermediate temperatures (800 °C) in air. The ultimate tensile strength (UTS) was acquired to determine the constant stress. The results show that the UTS at intermediate temperature is 14.3 % lower than that at room temperature. The strain-time curves at all stress levels show a deceleration stage and a stable stage. The stressed-oxidation rupture life decreases from 5.4 h to 0.9 h when the stress increases from 60 % to 90 % of the UTS. The element composition and fracture morphologies of the composites were also analyzed. The results show that the oxidation degree increases as the rupture time increases or constant stress decreases. Fiber degradation and interface defects caused by component oxidation induced local fiber failure and ultimate rupture of the composites, which may be attributed to strength degradation at intermediate temperatures and rupture of the composites during stress oxidation.  相似文献   

14.
Fatigue resistance and damage mechanisms of 2D woven SiC/SiC composites at high temperatures were investigated in this research. Fatigue behavior tests were performed at 1200℃ and 1000°C at 10 Hz and stress ratio of 0.1 for maximum stresses ranging from 80 to 120 MPa, and the fatigue run-out could be defined as 106 cycles. Evolution of the cumulative displacement and normalized modulus with cycles was analyzed for each fatigue condition. Fatigue run-out was achieved at 80 MPa and 1000°C. It could be found that the cycle lifetimes of the composites decreased sharply with the increasing maximum stress and temperature conditions significantly affected the fatigue performance under matrix cracking stress. The cumulative displacement showed no noticeable increase before 1000 cycles and the modulus of the failed specimens decreased before fracture. The retained properties of composites that achieved fatigue run-out, as well as the microstructures, were characterized in order to understand the fatigue behavior and failure mechanisms. The composites exhibited similar fracture morphology with matrix crack extension and glass phase oxidation formation under different conditions. In general, the high-temperature fatigue damage and failure of composites could be affected by combination of stress damage and oxidative embrittlement.  相似文献   

15.
SiC/SiC ceramic matrix composites (CMCs) are being developed for use in aero-engines to replace nickel superalloy components. Sub-element testing acts as the key stepping stone in bridging understanding derived from basic coupon testing and more complex component testing. This study presents the development of high temperature C-shape sub-element testing with the use of digital image correlation to study damage progression. The specimen is designed with a bias towards a mixed mode-stress state more similar to what a CMC component may see in service. Both monotonic and fatigue tests were completed on C specimens and compared with predicted behaviour from modelling. Test data from both test types suggested that specimens were failing once they reached a critical radial stress level. However evidence from fractography of specimens showed that in both monotonic and fatigue tests radial cracks (driven by hoop stresses) are initiating prior to circumferential cracks.  相似文献   

16.
This study examined the rupture mechanisms of an orthogonal 3D woven SiC fiber/BN interface/SiC matrix composite under combination of constant and cyclic tensile loading at elevated temperature in air. Monotonic tensile testing, constant tensile load testing, and tension–tension fatigue testing were conducted at 1100 °C. A rectangular waveform was used for fatigue testing to assess effects of unloading on the damage and failure behavior. Microscopic observation and single-fiber push-out tests were conducted to reveal the rupture mechanisms. Results show that both oxidative matrix crack propagation attributable to oxidation of the fiber–matrix interface and the decrease in the interfacial shear stress (IFSS) at the fiber–matrix interface significantly affect the lifetime of the SiC/SiC composites. A rupture strength degradation model was proposed using the combination of the oxidative matrix crack growth model and the IFSS degradation model. The prediction roughly agreed with the experimentally obtained results.  相似文献   

17.
《Ceramics International》2018,44(12):13873-13878
Continuous carbon fiber reinforced silicon carbide matrix composites (C/SiCs) have been widely used in aeronautic and astronautic fields because of their more attractive high temperature properties with less structural weight. However, reinforcing carbon fibers are susceptible to oxidation especially when the notch defects (ND) expose them to air. Mechanical tests, microstructural characterization combined with computed tomography (CT) were performed to explore the effect of the ND on the oxidation behavior and residual properties of the C/SiCs. Results showed that, before oxidation, the remaining bending strengths of the C/SiCs with even 5 ND numbers maintained still above 93%, indicating that increase of the ND numbers had little effect on mechanical properties. However, after oxidation at 700 °C, weight loss ratio of the C/SiCs with the ND numbers of 0, 1, 3 and 5 increased from 1.01% to 3.73%. It suggested that the more the ND numbers, the greater the proportion of carbon fiber exposed to air, and the less the oxidation resistance. Meanwhile, the residual bending strength remaining ratio of the C/SiCs largely reduced from 83.7% to 60.7% with the increase of ND numbers. It pointed out that the ND induced oxidation degradation of the reinforcing fiber caused higher sensitivity to the mechanical strength of the C/SiCs, and with the increase in the ND numbers, the strengths decreased more obviously.  相似文献   

18.
Three-dimensional carbon fiber reinforced silicon carbide (C/SiC) composites were fabricated by precursor infiltration and pyrolysis (PIP) with polycarbosilane as the matrix precursor, SiC coating prepared by chemical vapor deposition (CVD) and ZrB2-SiC/SiC coating prepared by CVD with slurry painting were applied on C/SiC composites, respectively. The oxidation of three samples at 1500 °C was compared and their microstructures and mechanical properties were investigated. The results show that the C/SiC without coating is distorted quickly. The mass loss of SiC coating coated sample is 4.6% after 2 h oxidation and the sample with ZrB2-SiC/SiC multilayer coating only has 0.4% mass loss even after oxidation. ZrB2-SiC/SiC multilayer coating can provide longtime protection for C/SiC composites. The mode of the fracture behavior of C/SiC composites was also changed. When with coating, the fracture mode of C/SiC composites became brittle. When after oxidation, the fracture mode of C/SiC composites without and with coating also became brittle.  相似文献   

19.
In this study, a combination of 3D FIB tomography and incremental surface polishing has been used to characterize cracking beneath 0.5 kg and 1 kg Vickers indentations on silicon nitride. It is shown that a half-penny cracking regime exists even for low indentation loads with c/a ratios < 2 indicating that the c/a ratio cannot reliably be used to predict sub-surface crack morphology. For the first time, the presence of deep lateral cracks interconnected with radial cracks was also observed surrounding indentations of low loads on silicon nitride, and it is likely that these could contribute to material removal via spalling.  相似文献   

20.
《Ceramics International》2021,47(20):28158-28166
The stressed-oxidation behaviors of 2D woven SiCf/BN/SiC composites were investigated at 950 °C and 1100 °C in air. The different proportions (60%–90%) of the ultimate tensile strength (UTS) at corresponding temperatures were chosen as constant stress. The stressed-oxidation experiments were taken to failure or interrupted (240h). The UTS decreases by 20.75% at 950 °C and 30.71% at 1100 °C. The composites did not fail during stressed oxidation when subjected to constant stress corresponding to the initial linear and the beginning of nonlinear segments of the tensile curve, above which the composites failed with a maximum failure life of about 10h. Fiber degradation due to the thermal exposure and the fiber cracks caused by the oxidation of BN interface coating and SiC fiber could be responsible for the strength degradation and failure of the composites during stressed oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号