首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
通过对超高性能混凝土进行高温加热和高温作用后立方体抗压强度试验,研究了超高性能混凝土高温作用后的表观特征、质量损失及力学性能。对比了单掺钢纤维、单掺聚丙烯纤维和混掺钢纤维和聚丙烯纤维对超高性能混凝土高温爆裂的抑制效果,考察了温度、纤维种类和掺量、骨料(石英砂和钢渣)对超高性能混凝土强度的影响。试验结果表明:混掺1%钢纤维和2%聚丙烯纤维能有效抑制超高性能混凝土高温爆裂,在高温作用后依旧保持完整形态;钢渣骨料混杂纤维超高性能混凝土具有优异的高温力学性能,在1 000℃高温作用后仍能保持67%的残余强度;随着温度的升高,超高性能混凝土立方体抗压强度整体上表现出先升高后降低的规律;在目标温度超过600℃时,高温增强了超高性能混凝土的延性。  相似文献   

2.
纤维素纤维及混杂纤维混凝土的弯曲韧性   总被引:6,自引:0,他引:6  
研究了纤维素纤维UF500增强混凝土的抗弯韧性,同时进行了合成纤维、钢纤维及混杂纤维混凝土的弯曲韧性试验,测定了纤维混凝土梁的荷载一挠度全曲线.基于美国ASTM方法,分析了纤维素纤维、合成纤维、钢纤维及其混杂纤维增强混凝土的弯曲韧性.研究表明,纤维素纤维可提高混凝土抗弯韧性和变形能力,韧性指数I_5、J_(10)分别比素混凝土提高了3.0和5.8倍;在纤维体积率相同情况下,纤维素纤维混凝土抗弯韧性高于聚丙烯纤维混凝土;纤维素纤维和钢纤维混杂使用显著改善了混凝土的韧性和变形性能,使混凝土由脆性破坏变为延性破坏.  相似文献   

3.
有腹筋UHPFRC梁抗剪承载力计算   总被引:1,自引:0,他引:1  
为研究有腹筋UHPFRC梁的抗剪承载力,根据超高性能纤维混凝土梁的剪切破坏机理,结合修正压力场理论,考虑梁上部受压区混凝土和下部受拉区骨料咬合力、箍筋及裂缝间钢纤维共同承受剪力,推导了有腹筋超高性能纤维混凝土梁的抗剪承载力计算公式.与9根超高性能纤维混凝土梁的剪切试验结果进行对比,用推导公式计算的抗剪承载力与试验结果吻合较好,且变异系数较小,可用于有腹筋超高性能纤维混凝土梁的抗剪分析和设计.  相似文献   

4.
简要综述了国内外关于钢纤维混凝土弯曲韧性指数的计算方法,并选取我国现行的规程JGJ/T 221—2010试验方法,通过钢纤维高性能混凝土的弯曲韧性试验,研究了钢纤维体积分数和钢纤维类型对钢纤维高性能混凝土弯曲韧性的影响.结果表明:钢纤维高性能混凝土峰值荷载与弯曲韧性均随着体积分数的增大而提高;微细型钢纤维提高混凝土弯曲强度指标幅度最大,端钩型钢纤维提高混凝土弯曲韧性指标幅度最大.  相似文献   

5.
为改善小跨高比钢筋混凝土连梁的抗震性能,考虑基体材料与钢板的影响。本文提出新型钢板-纤维增强混凝土组合双连梁,并对普通混凝土双连梁、内置钢板-混凝土组合双连梁和钢板-纤维增强混凝土组合双连梁试件进行了低周反复加载试验,对双连梁的破坏过程、破坏形态、承载能力、变形能力和耗能能力等进行研究。结果表明:除了普通混凝土双连梁试件发生剪切破坏之外,内置钢板-混凝土组合双连梁试件发生弯剪破坏,钢板-纤维增强混凝土组合双连梁试件发生延性较好的弯曲破坏;加入钢板后的钢板-组合双连梁试件在峰值点处的承载力相对普通混凝土双连梁提高将近1.56倍,与钢板-纤维增强混凝土试件峰值点处承载力相差不大,表明钢板的内置可以改善双连梁开缝引起的内力损伤,纤维的加入对组合双连梁承载力提高影响不大。在破坏点处,钢板-纤维增强混凝土组合双连梁试件的累积耗能分别是普通混凝土双连梁、内置钢板-混凝土组合双连梁试件的5.26和2.2倍,表现出较好的承载能力、变形能力和耗能能力。直到试件到达最终破坏时,钢板-纤维增强混凝土组合双连梁表面混凝土仍然保持完整,从而可以达到减小甚至避免了混凝土开裂破坏,减少震后修复费用,为组合双连梁的实际应用提供一定的理论基础。  相似文献   

6.
为改善小跨高比钢筋混凝土连梁的抗震性能,考虑基体材料与钢板的影响,提出新型钢板–纤维增强混凝土组合双连梁,并对普通混凝土双连梁、内置钢板–混凝土组合双连梁和钢板–纤维增强混凝土组合双连梁试件进行了低周反复加载试验,对双连梁的破坏过程、破坏形态、承载能力、变形能力和耗能能力等进行研究。结果表明:除了普通混凝土双连梁试件发生剪切破坏之外,内置钢板–混凝土组合双连梁试件发生弯剪破坏,钢板–纤维增强混凝土组合双连梁试件发生延性较好的弯曲破坏。加入钢板后的钢板–混凝土双连梁试件在峰值点处的承载力相对普通混凝土双连梁提高将近1.56倍,与钢板–纤维增强混凝土组合双连梁试件峰值点处承载力相差不大,表明钢板的内置可以改善双连梁开缝引起的内力损伤,纤维的加入对组合双连梁承载力提高影响不大。在破坏点处,钢板–纤维增强混凝土组合双连梁试件的累积耗能分别是普通混凝土双连梁、内置钢板–混凝土组合双连梁试件的5.26和2.20倍,表现出较好的承载能力、变形能力和耗能能力。直到试件到达最终破坏时,钢板–纤维增强混凝土组合双连梁表面混凝土仍然保持完整,减小甚至避免了混凝土开裂破坏,减少了震后修复费用,为组合双连梁的实际应用提供一定的理论基础。  相似文献   

7.
玄武岩纤维超高性能混凝土力学性能试验   总被引:1,自引:0,他引:1  
为了降低超高性能混凝土中水泥的用量,制备绿色超高性能混凝土,研究了玄武岩纤维对超高性能混凝土力学性能的影响,提出了力学性能最优的低水泥用量超高性能混凝土配合比和玄武岩纤维的最佳掺量.采用粉煤灰和硅灰以不同比例组合作为水泥的替代材料制备超高性能混凝土,分析了添加纤维和不添加纤维试件的和易性、力学性能和微观结构.结果表明,当粉煤灰和硅灰混杂替代水泥比例达50%时,其力学性能与原试件强度相当;掺加0.1%玄武岩纤维的试件其力学性能高于掺加0.2%和0.3%纤维和没有掺加纤维试件的力学性能.  相似文献   

8.
目的揭示钢纤维和聚丙烯纤维混杂后对高性能混凝土强度和抗裂性能的影响.方法参照国家标准和试验方法,按不同的纤维掺量设计了16组纤维增强高性能混凝土试件,进行了大量抗压强度试验和劈裂抗拉性能试验研究.结果低体积掺量的聚丙烯纤维增强高性能混凝土劈裂抗拉试验破坏为爆裂式破坏;在高性能混凝土中掺加适量的钢纤维和聚丙烯纤维可使抗拉强度提高10%-40%,使拉压比增大到1/18-1/16;劈裂抗拉试验破坏为带有一定延性的破坏;钢纤维体积掺量为0.8%、聚丙烯纤维体积掺量为0.11%时混杂纤维增强高性能混凝土的复合增强效果最好,高性能混凝土拉压比为1/16.结论适量掺加钢纤维和聚丙烯纤维可使高性能混凝土的拉压比增大,提高高性能混凝土的抗裂性能.  相似文献   

9.
为提高纤维增强超高性能混凝土(UHPC)的拉伸性能,采用三种类型钢纤维在不同纤维数量下对混凝土拉伸破坏行为进行研究.试验结果表明:掺入纤维可显著提高混凝土拉伸能力;掺入波纹型钢纤维可使纤维增强UHPC达到最佳拉伸性能,直线型和端勾型钢纤维次之;端勾型钢纤维增强UHPC的抗拉性能较差的原因是过度的机械锚固和应力集中造成严...  相似文献   

10.
研究了4种不同钢纤维掺量(体积掺量分别为0%,1.0%,1.5%,2.0%)的大掺量粉煤灰超高性能混凝土的单轴压缩强度、弹性模量、单轴抗拉强度、弯曲韧性、断裂韧性、断裂能等静态力学行为,以及高速冲击、压缩作用下的应力波传播规律、应力–应变曲线和破坏特征等动态力学行为.结果表明:掺加钢纤维的大掺量粉煤灰超高性能混凝土的轴心抗压强度、弹性模量和抗拉强度略有增大,韧性指数、残余强度、断裂韧度和断裂能成倍提高;未能增加冲击、压缩作用下的应变率效应程度,但却增大动态应力–应变曲线下的面积,提高试件破坏的应变率阈值,使混凝土存在裂而不散的破坏现象.  相似文献   

11.
为研究单掺钢纤维、聚丙烯纤维和纤维素纤维对混凝土抗压强度及弯曲韧性的影响,在不同体积掺量下进行了混凝土试块的抗压强度及弯曲韧性试验,并对试验结果进行了变异性分析。试验结果表明:3种纤维混凝土抗压强度较素混凝土平均提高26.7%、6.1%和11.1%;二次抗压强度保持率分别达77.0%、45.7%和58.0%;抗弯承载力最大分别提高31.6%、3.5%和14.0%;基于荷载挠度曲线、Newkumar法及弯拉应力应变曲线分别计算的弯曲韧性指数I20、Newkumar指标PCSm和韧度比Rx分别为素混凝土的4.2、3.1、2.6倍,19.9、9.8、6.9倍和4.0、3.4、2.7倍。变异性分析结果表明,掺入纤维后混凝土的抗压强度变异性小于弯曲韧性。同时,基于Newkumar法和应力应变曲线法算得的混凝土弯曲韧性指标变异系数小于荷载挠度曲线法。总体而言,钢纤维增强混凝土的抗压强度和弯曲韧性最为显著,且变异系数最小。纤维素纤维增强混凝土抗压强度及聚丙烯纤维增强混凝土弯曲韧性则相对较显著。  相似文献   

12.
鉴于含粗骨料的超高性能混凝土UHPC(CA)的抗火性特征亟待研究探明,文中对国内外UHPC(CA)的发展历程与火灾高温性能研究进行了综述.提出应针对C100—C150范围内的UHPC(CA)开展高温损伤与抗火性研究.UHPC(CA)抗火性改善的主要目标首先是抑制作为主要损伤模式的高温爆裂,其次是减小高温引起的裂纹扩展、化学分解、孔粗化等其他损伤,使UHPC(CA)具有良好的火灾安全性.而抑制高温爆裂最有效的手段是抑制混凝土内部主要由蒸汽压所驱动的裂纹扩展.基于高温造成的UHPC(CA)宏观断裂性能与微观结构劣化等损伤特征,建立UHPC(CA)抗火性改善机理,提出确保UHPC(CA)具有良好抗火性的技术途径.定量确定聚合物纤维、钢纤维或其他种类的纤维分别对抗火性的贡献以及这几种纤维的相互作用,确定混杂纤维中聚合物纤维、钢纤维或其他种类纤维的合理用量范围.  相似文献   

13.
To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evaluated by optical electron micrometer(OEM) and scanning electron microscope(SEM). Three kinds of fiber, such as polyacrylonitrile-based carbon fiber, basalt fiber, and glass fiber, were used in the composite fibers reinforced cement concrete. The composite fibers could form a stable structure in concrete after the liquid-phase coupling treatment, gas-liquid double-effect treatment, and inert atmosphere drying. The mechanical properties of composite fibers reinforced concrete(CFRC) were studied by universal test machine(UTM). Moreover, the effect of composite fibers on concrete was analyzed based on the toughness index and residual strength index. The results demonstrated that the composite fibers could improve the mechanical properties of concrete, while the excessive amount of composite fibers had an adverse effect on the mechanical properties of concrete. The composite fibers could significantly improve the toughness index of CFRC, and the increment rate is more than 30%. The composite fibers could form a mesh structure, which could promote the stability of concrete and guarantee the excellent mechanical properties.  相似文献   

14.
兼顾优异施工及力学性能超高性能混凝土(UHPC)研制的重点之一是确定合适的水胶比。为此,以150 MPa级UHPC的原材料和配合比均不变(除用水量外)为前提,研究水胶比(0.15~0.2)对UHPC施工与力学性能的影响规律。通过相关试验得到了UHPC不同湿拌时间的扩展度、充分湿拌时间、静停一段时间的扩展度、抗压、抗折强度、四点弯曲应力挠度曲线、四点弯曲出现可视裂纹时下缘等效拉应力;对抗压、抗折强度进行了变异性分析;利用应力挠度曲线,基于规范法得到了弯曲韧性指标,并提出了其改进方法。结果表明:UHPC达最佳扩展度所需湿拌时间(充分湿拌时间)为6 min;水胶比由0.16增至0.19时UHPC扩展度基本呈线性增长,水胶比每增加0.01,UHPC扩展度平均增幅为109 mm;当水胶比、静停时间分别为0.19、4 h时,扩展度损失40 mm,损失率仅5.9%;UHPC抗压强度、抗折强度及弯曲韧性指标随水胶比的增大皆呈先增后减趋势,当水胶比分别为0.18、0.16和0.16时达到最优;应力峰值前的应力挠度曲线并不是典型全凸形曲线;可视初裂抗折强度约为抗折强度的0.85倍;UHPC试件的弯曲韧性较好,宜采用可视初裂挠度作为初始变形参考进行韧性指标计算;为保证UHPC兼顾良好施工与力学性能,建议湿拌时间、水胶比分别为6 min、0.18或0.185。  相似文献   

15.
The compressive, shear strengths and abrasion-erosion resistance as well as flexural properties of two polypropyenc fiber reinforced concretes and the comparison with a steel fiber reinforced concrete were reported. The exprimental results show that a low content of polypropylene fiber (0.91 kg/m^3 of concrete ) slightly decreases the compressive and shear strengths, and appreciably increased the flexural strength, but obviously enhances the toughness index and fracture energy for the concrete with the same mix proportion, coasequently it plays a role of anti-cracking and improving toughness in concrete. Moreover, the polypropylene mesh fiber is better than the polypropylene monofilament fiber in improving flexaral strength and toughness of concrete, but the types of polypropylene fibers are inferior to steel fiber. All the polypropylene and steel fibers have no great beneficial effect on the abrasion-erosion resistance of concrete.  相似文献   

16.
The compressive strength and ilexural toughness as well as fracture energy of fiber reinforced highperformance concrete (FRHPC) subjected to different high temperatures were studied. The results showed that after exposure at 300,600 and 900℃, the concrete mixes retained 88.1% , 41.3% and 10.2% of the original compressive strength on average, respectively. Steel fiber and polypropylene (PP) fiber were both effective in minimizing the damage effect of high temperatures on the compressive strength. The HPC reinforced with steel fibers showed higher flexural toughness and fracture energy before and after the high-temperature exposures. In comparison, PP fibers had minor beneficial effects on the flexural toughness and fracture energy. The mechanical properties of HPC reinforced with hybrid fibers (steel fiber + PP fiber) were equivalent to or better than those of HPC reinforced with steel fibers alone. In addition, the failure pattern of FRHPC beams changed from pull-out of steel fibers at lower temperatures (20, 300 and 600℃) to tensile failure of steel fibers at higher temperature (900 ℃).  相似文献   

17.
掺加聚丙烯纤维对路面混凝土抗冲击韧性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
水泥混凝土是一种典型的脆性材料,如何改善承受车辆动荷载作用下的水泥混凝土路面板结构的抗冲击性能,是改善水泥混凝土路面使用性能的关键问题之一。参照美国混凝土协会混凝土抗冲击韧性试验方法,自制落锤冲击试验装置,在混凝土中掺加不同掺量的聚丙烯纤维,在满足工作性能的条件下,成型制作掺量不同的聚丙烯纤维混凝土进行冲击试验。采用初裂次数、终裂次数等指标对聚丙烯纤维混凝土的抗冲击韧性进行评定,并与基准混凝土试验结果进行对比。结果表明:当纤维掺量由0、0.6 kg/m30、.9 kg/m3增加到1.2 kg/m3时,其抗冲击韧性最大增长4.3倍。聚丙烯纤维大大提高混凝土抗冲击韧性的特性,对于承受动荷载的路面结构是非常有利的。  相似文献   

18.
为研究配筋超高性能混凝土(ultra-high performance concrete, UHPC)柱抗震性能及影响因素,以碳纤维增强树脂(carbon fiber reinforced polymer, CFRP)布缠绕、钢筋强度和剪跨比为参变量,对1根普通钢筋UHPC柱、1根CFRP布缠绕的普通钢筋UHPC柱和3根高强钢筋UHPC柱进行了低周往复试验,分析了试件的破坏形态、荷载-位移曲线、延性和耗能能力等。结果表明:对于剪跨比为1.5~4.0的配筋UHPC柱,延性及耗能能力均较好;在CFRP缠绕或较大剪跨比下,试件的破坏形态由剪压破坏转变为弯剪破坏,延性得到明显改善;提高UHPC柱纵筋和箍筋的强度可提高试件的承载力和延性;普通箍筋的裂后工作能力较差,建议UHPC受剪构件配置屈服强度在600 MPa以上的箍筋;基于桁架-拱模型,建立了考虑钢纤维抗拉贡献、轴压比和剪跨比影响的配筋UHPC柱的抗剪承载力计算公式,计算值与试验值吻合较好,可为UHPC结构设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号