首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a logic-level soft error mitigation methodology for combinational circuits. The proposed method exploits the existence of logic implications in a design, and is based on selective addition of pertinent functionally redundant wires to the circuit. We demonstrate that the addition of functionally redundant wires reduces the probability that a single-event transient (SET) error will reach a primary output, and, by extension, the soft error rate (SER) of the circuit. We discuss three methods for identifying candidate functionally redundant wires, and we outline the necessary conditions for adding them to the circuit. We then present an algorithm that assesses the SET sensitization probability reduction achieved by candidate functionally redundant wires, and selects an appropriate subset that, when added to the design, minimizes its SER. Experimental results on ISCAS'89 benchmark circuits demonstrate that the proposed soft error mitigation methodology yields a significant SER reduction at the expense of commensurate hardware, power, and delay overhead.  相似文献   

2.
为了有效降低容忍软错误设计的硬件和时序开销,该文提出一种时序优先的电路容错混合加固方案。该方案使用两阶段加固策略,综合运用触发器替换和复制门法。第1阶段,基于时序优先的原则,在电路时序松弛的路径上使用高可靠性时空冗余触发器来加固电路;第2阶段,在时序紧张的路径使用复制门法进行加固。和传统方案相比,该方案既有效屏蔽单粒子瞬态(SET)和单粒子翻转(SEU),又减少了面积开销。ISCAS89电路在45 nm工艺下的实验表明,平均面积开销为36.84%,电路平均软错误率降低99%以上。  相似文献   

3.
As technology scales down, more single-event transients (SETs) are expected to occur in combinational circuits and thus contribute to the increase of soft error rate (SER). We propose a systematic analysis method to precisely model the SET latching probability. Due to the decreased critical charge and shortened pipeline stage, the SET duration time is likely to exceed one clock cycle. In previous work, the SET latching probability is modeled as a function of SET pulse width, setup and hold times, and clock period for single-cycle SETs. Our analytical model does not only include new dependent parameters such as SET injection location and starting time, but also precisely categorizes the SET latching probabilities for different parameter ranges. The probability of latching multiple-cycle SETs is specifically analyzed in this work to address the increasing ratio of SET pulse width over clock period. We further propose a method that exploits the boundaries of those dependent parameters to accelerate the SER estimation. Simulation results show that the proposed analysis method achieves up to 97% average accuracy, which is applicable for both single- and multiple-cycle SETs. Our case studies on ISCAS’85 benchmark circuits confirm our analysis on the impact of SET injection location and starting time on the SET latching probability. By exploiting our analytical model, we achieve up to 78% simulation time reduction on the process of SET latching probability and SER estimation, compared with Monte-Carlo simulation.  相似文献   

4.
This paper describes a novel design technique for hardening sequential circuits against Single Event Transients (SETs) and Single Event Upsets (SEUs) in non-volatile FPGAs. Double Modular Redundancy (DMR) is used to detect the presence of a SET in a sequential circuit. However, DMR solutions are only able to detect SET’s and not mask or correct them. Therefore, extra functionality is required to mask and correct the error after it has been detected. The central idea of the method proposed is to “freeze” the sequential circuit at a particular state when a SET is detected. As soon as the SET dissipates, the circuit is “unfrozen” so that it can continue with normal operation. Due to the short SET lifetime versus much longer circuit clock periods, the “frozen” state will normally not last more than one clock period. The proposed scheme is suitable for delay-insensitive applications requiring minimal hardware overhead.The proposed DMR method is thoroughly tested on ITC99 benchmarks. With a small delay of one clock period whenever a SET is detected, the proposed method offers immunity against the errors caused by SETs in non-volatile FPGA systems.  相似文献   

5.
This paper describes a tunable transient filter (TTF) design for soft error rate reduction in combinational logic circuits. TTFs can be inserted into combinational circuits to suppress propagated single-event transients (SETs) before they can be captured in latches or flip-flops. TTFs are tuned by adjusting the maximum width of the propagated SET that can be suppressed. A TTF requires 6–14 transistors, making it an attractive cost-effective option to reduce the soft error rate in combinational circuits. A global optimization approach based on geometric programming that integrates TTF insertion with dual-V DD and gate sizing is described. Simulation results for the 65 nm process technology indicate that a 17–48× reduction in the soft error rate can be achieved with this approach.  相似文献   

6.
Soft errors, due to cosmic radiations, are one of the major challenges for reliable VLSI designs. In this paper, we present a symbolic framework to model soft errors in both synchronous and asynchronous designs. The proposed methodology utilizes Multiway Decision Graphs (MDGs) and glitch-propagation sets (GP sets) to obtain soft error rate (SER) estimation at gate level. This work helps mitigate design for testability (DFT) issues in relation to identifying the controllable and the observable circuit nodes, when the circuit is subject to soft errors. Also, this methodology allows designers to apply radiation tolerance techniques on reduced sets of internal nodes. To demonstrate the effectiveness of our technique, several ISCAS89 sequential and combinational benchmark circuits, and multiple asynchronous handshake circuits have been analyzed. Results indicate that the proposed technique is on average 4.29 times faster than the best contemporary state-of-the-art techniques. The proposed technique is capable to exhaustively identify soft error glitch propagation paths, which are then used to estimate the SER. To the best of our knowledge, this is the first time that a decision diagram based soft error identification approach is proposed for asynchronous circuits.  相似文献   

7.
Besides the advantages brought by technology scaling, soft errors have emerged as an important reliability challenge for nanoscale combinational circuits. Hence, it is important for vulnerability analysis of digital circuits due to soft errors to take advantage of practical metrics to achieve cost-effective and reliable designs. In this paper, a new metric called Triple Constraint Satisfaction probability (TCS) is proposed to evaluate the soft error vulnerability of combinational circuits. TCS is based on a concept called Probabilistic Vulnerability Window (PVW) which is an inference of the necessary conditions for soft-error occurrence in the circuit. We propose a computation model to calculate the PVW’s for all circuit gate outputs. In order to show the efficiency of the proposed metric, TCS is used in the vulnerability ranking of the circuit gates as the basic step of the vulnerability reduction techniques. The experimental results show that TCS provides a distribution of soft error vulnerability similar to that obtained with fault injections performed with HSPICE or with an event driven simulator while it is more than three orders of magnitude faster. Also, the results show that using the proposed metric in the well-known filter insertion technique achieves up to 19.4%, 34.1%, and 55% in soft error vulnerability reduction of benchmark circuits with the cost of increasing the area overhead by 5%, 10%, and 20%, respectively.  相似文献   

8.
In recent work, the error latching probability due to an SET is calculated for a single observable point, and this help in hardening the design. This paper utilizes a recently proposed probabilistic framework for SET propagation in order to diagnose the location and time of strike based on errors observed at multiple points. The proposed diagnostic framework requires a new approach to calculate the probability for SET propagation to multiple non-independent variables. It is shown experimentally that error appearances at multiple observable points help in SET diagnosis. The time performance of the proposed diagnostic framework is compared against an alternative implementation. This is particularly important in on-line diagnosis.  相似文献   

9.
《Microelectronics Reliability》2014,54(6-7):1412-1420
Soft errors caused by particles strike in combinational parts of digital circuits are a major concern in the design of reliable circuits. Several techniques have been presented to protect combinational logic and reduce the overall circuit Soft Error Rate (SER). Such techniques, however, typically come at the cost of significant area and performance overheads. This paper presents a low area and zero-delay overhead method to protect digital circuits’ combinational parts against particles strike. This method is made up of a combination of two sub-methods: (1) a SER estimation method based on signal probability, called Estimation by Characterizing Input Patterns (ECIP) and (2) a protection method based on gate sizing, called Weighted and Timing Aware Gate Sizing (WTAGS). Unlike the previous techniques that either overlook internal nodes signal probability or exploit fault injection, ECIP computes the sensitivity of each gate by analytical calculations of both the probability of transient pulse generation and the probability of transient pulse propagation; these calculations are based on signal probability of the whole circuit nodes which make ECIP much more accurate as well as practical for large circuits. Using the results of ECIP, WTAGS characterizes the most sensitive gates to efficiently allocate the redundancy budget. The simulation results show the SER reduction of about 40% by applying the proposed method to ISCAS’89 benchmark circuits while imposing no delay overhead and 5% area overhead.  相似文献   

10.
Soft error modeling and remediation techniques in ASIC designs   总被引:1,自引:0,他引:1  
Soft errors due to cosmic radiations are the main reliability threat during lifetime operation of digital systems. Fast and accurate estimation of soft error rate (SER) is essential in obtaining the reliability parameters of a digital system in order to balance reliability, performance, and cost of the system. Previous techniques for SER estimation are mainly based on fault injection and random simulations. In this paper, we present an analytical SER modeling technique for ASIC designs that can significantly reduce SER estimation time while achieving very high accuracy. This technique can be used for both combinational and sequential circuits. We also present an approach to obtain uncertainty bounds on estimated error propagation probability (EPP) values used in our SER modeling framework. Comparison of this method with the Monte-Carlo fault injection and simulation approach confirms the accuracy and speed-up of the presented technique for both the computed EPP values and uncertainty bounds.Based on our SER estimation framework, we also present efficient soft error hardening techniques based on selective gate resizing to maximize soft error suppression for the entire logic-level design while minimizing area and delay penalties. Experimental results confirm that these techniques are able to significantly reduce soft error rate with modest area and delay overhead.  相似文献   

11.
12.
We present a design technique, Partial evaluation-based Triple Modular Redundancy (PTMR), for hardening combinational circuits against Single Event Upsets (SEU). The basic ideas of partial redundancy and temporal TMR are used together to harden the circuit against SEUs. The concept of partial redundancy is used to eliminate the gates whose outputs can be determined in advance. We have designed a fault insertion simulator to evaluate partial redundancy technique on the designs from MCNC′91 benchmark. Experimental results demonstrate that we can reduce the area overhead by up to 39.18% and on average 17.23% of the hardened circuit when compared with the traditional TMR. For circuits with a large number of gates and less number of outputs, there is a significant savings in area. Smaller circuits or circuits with a large number of outputs also show improvement in area savings for increased rounding range.  相似文献   

13.
This paper presents a new hybrid fault-tolerant architecture for robustness improvement of digital CMOS circuits and systems. It targets all kinds of errors in combinational part of logic circuits and thus, can be combined with advanced SEU protection techniques for sequential elements while reducing the power consumption. The proposed architecture combines different types of redundancies: information redundancy for error detection, temporal redundancy for soft error correction and hardware redundancy for hard error correction. Moreover, it uses a pseudo-dynamic comparator for SET and timing errors detection. Besides, the proposed method also aims to reduce power consumption of fault-tolerant architectures while keeping a comparable area overhead compared to existing solutions. Results on the largest ISCAS’85 and ITC’99 benchmark circuits show that our approach has an area cost of about 3 % to 6 % with a power consumption saving of about 33 % compared to TMR architectures.  相似文献   

14.
随着工艺尺寸的不断缩小,由单粒子瞬态(Single Event Transient, SET)效应引起的软错误已经成为影响宇航用深亚微米VLSI电路可靠性的主要威胁,而SET脉冲的产生和传播也成为电路软错误研究的热点问题。通过研究SET脉冲在逻辑链路中的传播发现:脉冲上升时间和下降时间的差异能够引起输出脉冲宽度的展宽或衰减;脉冲的宽度和幅度可决定其是否会被门的电气效应所屏蔽。该文提出一种四值脉冲参数模型可准确模拟SET脉冲形状,并采用结合查找表和经验公式的方法来模拟SET脉冲在电路中的传播过程。该文提出的四值脉冲参数模型可模拟SET脉冲在传播过程中的展宽和衰减效应,与单参数脉冲模型相比计算精度提高了2.4%。该文应用基于图的故障传播概率算法模拟SET脉冲传播过程中的逻辑屏蔽,可快速计算电路的软错误率。对ISCAS89及ISCAS85电路进行分析的实验结果表明:该方法与HSPICE仿真方法的平均偏差为4.12%,计算速度提升10000倍。该文方法可对大规模集成电路的软错误率进行快速分析。  相似文献   

15.
The soft error rate (SER) due to heavy-ion irradiation of a clock tree is investigated in this paper. A method for clock tree SER prediction is developed, which employs a dedicated soft error analysis tool to characterize the single-event transient (SET) sensitivities of clock inverters and other commercial tools to calculate the SER through fault-injection simulations. A test circuit including a flip-flop chain and clock tree in a 65 nm CMOS technology is developed through the automatic ASIC design flow. This circuit is analyzed with the developed method to calculate its clock tree SER. In addition, this circuit is implemented in a 65 nm test chip and irradiated by heavy ions to measure its SER resulting from the SETs in the clock tree. The experimental and calculation results of this case study present good correlation, which verifies the effectiveness of the developed method.  相似文献   

16.
This paper proposes, for the first time, the concept of programmable logic circuit realized with single-electron transistors (SETs). An SET having nonvolatile memory function is a key element for the programmable SET logic. The writing and erasing operations of the nonvolatile memory function make it possible to tune the phase of Coulomb oscillations. The half-period phase shift induced by the memory function makes the function of SETs complementary to that of the conventional SETs. As a result, SETs having nonvolatile memory function have the functionality of both the conventional (nMOS-like) SETs and the complementary (pMOS-like) SETs. By utilizing this fact, the function of SET circuits can be programmed with great flexibility, on the basis of the information stored by the memory functions. We have successfully fabricated SETs that operate at room temperature and observed the highest room-temperature peak-to-valley current ratio of Coulomb oscillations. The operation of the programmable SET logic is demonstrated using the room-temperature operating SETs. This is the first demonstration of room-temperature SET logic operation. The proposed programmable SET logic provides the potential for low-power, intelligent LSI chips suitable for mobile applications.  相似文献   

17.
The shrinking feature sizes make transistors increasingly susceptible to soft errors, which can severely degrade the systems’ RAS (Reliability, Availability, and Serviceability). The tough challenge results from not only increasing SER (soft error rate) of storage cells, but also the increasing susceptibility of combinational logics to soft errors. How to efficiently detect soft errors becomes the primary problem in the Backward Error Recovery (BER) schemes that are cost-effective in soft error tolerance. This paper presents a soft error detection scheme, AUDITOR, for flip-flop based pipelines. The AUDITOR copes with both types of soft errors—single event upset (SEU) and single event transient (SET). We propose a “local-audit” fault detection mechanism, by which each pipeline stage is verified independently and the verifying result registers with a dedicated “audit” bit (V-bit). All the V-bits are distributed across the whole pipeline and synergically monitor the pipeline execution. To relax the constraint of SET detection capability imposed by the inherent fully synchronous operation mode in flip-flop based pipelines, we firstly propose using path-compensation technique to address this constraint. Furthermore, a reuse-based design paradigm is employed to reduce the implementation complexity and area overhead. The AUDITOR possesses robust detection capability and short detection latency, at the expense of about 29 % and 50 % increase in area and power consumption, respectively.  相似文献   

18.
Switching activity is much higher in test mode as compared to normal mode of operation which causes higher power dissipation, and this leads to several reliability issues. Output gating is proposed as a very effective low-power test technique, which is used to eliminate redundant switching activity in the combinational logic of circuit under test (CUT) during the shifting of test vectors in a scan chain. This method reduces the average power significantly, but it introduces performance overhead in normal mode of operation. In this work, a new output gating technique is proposed which eliminates redundant switching activity in combinational logic of CUT during shifting of test vectors without any negative impact on performance as compared to earlier proposed output gating techniques. The proposed design also improves the performance of the scan flop in functional mode with negligible area overhead incurred due to extra transistors. Experimental results show that our design has a more robust performance over wide range of capacitive load as compared to earlier designs.  相似文献   

19.
SET-based nano-circuit simulation and design method using HSPICE   总被引:2,自引:0,他引:2  
This paper presents a simulation and design method for complementary SET-based nano-circuits from a practical circuit design point of view. HSPICE behavioral implementation of modified Lientschnig's SET model based on the orthodox theory and the Birth-Death Markov chain is demonstrated and verified with Coulomb characteristics. It shows reduced CPU time, improvement of accuracy, and more compatibility with other SPICE softwares on both Windows and Unix platforms. The proposed design methodology presents how to build static CMOS-like SET circuits, and demonstrates that conventional CMOS circuit design methodologies are all applicable to SET circuit designs based on the methodology. HSPICE simulation results show that, for 1 MΩ junction resistance, the power consumption of a SET NAND2 gate is less than 0.3 pW, and the propagation delay for a SET XOR2 gate is 29.8 ns while driving a 10 aF load.  相似文献   

20.
This letter proposes an efficient kernel‐based partitioning algorithm for reducing area and power dissipation in combinational circuit designs using don't‐care sets. The proposed algorithm decreases power dissipation by partitioning a given circuit using a kernel extracted from the logic. The proposed algorithm also reduces the area overhead by minimizing duplicated gates in the partitioned sub‐circuits. The partitioned subcircuits are further optimized utilizing observability don't‐care sets. Experimental results for the MCNC benchmarks show that the proposed algorithm synthesizes circuits that on the average consume 22.5% less power and have 12.7% less area than circuits generated by previous algorithms based on a precomputation scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号