首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the effects and the optimization of machining parameters on surface roughness and roundness in the turning wire electrical discharge machining (TWEDM) process are investigated. In the TWEDM process, a new machining parameter, such as rotational speed, is introduced, which changes the normal machining conditions in conventional wire electrical discharge machining (WEDM). By the Taguchi method, a complete realization of the process parameters and their effects were achieved. The Taguchi method has not been used in TWEDM by other researchers. The surface roughness and roundness were measured to verify the process. In addition, the open-circuit voltage, pulse-off time, open arc voltage, and the inter-electrode gap size, which are replaced by power, time-off, voltage, and servo, respectively, and also wire tension, wire speed, and rotational speed were chosen for evaluation by the Taguchi method. An L18 (21?×?37) Taguchi standard orthogonal array was chosen for the design of experiments. The level of importance of the machining parameters on the surface roughness and roundness was determined by using analysis of variance (ANOVA). The optimum machining parameters combination was obtained by using the analysis of signal-to-noise (S/N) ratios. The variation of surface roughness and roundness with machining parameters was mathematically modeled by using the regression analysis method. Finally, experimentation was carried out to identify the effectiveness of the proposed method. The presented model is also verified by a set of verification tests.  相似文献   

2.
An investigation has been made to combine ultrasonic vibration and wire electrical discharge turning. Design of a submerged, precise, flexible, and corrosion-resistant rotary spindle is introduced. The spindle was mounted on a five-axis wire electrical discharge machine to rotate the workpiece in order to generate free-form cylindrical geometries. An auxiliary device that produces ultrasonic vibration was installed between the two wire guides. The ultrasonic system consists of an ultrasonic generator, a transducer, and a wire holder. When the wire is being driven, the transducer together with the wire holder vibrates under the resonance condition. Material removal rate (MRR) indicates efficiency and cost-effectiveness of the process. Experimental results show that wire vibration induced by ultrasonic action has a significant effect on material removal rate. This study has been conducted to evaluate the influence of four design factors: power, pulse off time, spindle rotational speed, and ultrasonic vibration over material removal rate. This has been done by means of design of experiments technique. Analysis of variance was used to determine significant effective factors and also to obtain an equation based on data regression. Experimental results indicate that ultrasonic vibration and power are the most significant influencing parameters on MRR. Rotational speed and pulse off time are the next in ranking. In order to study surface roughness, R a is measured in different machining parameters.  相似文献   

3.
A study has been made of the theory and techniques of turning precise circular components. The possibility of such high accuracy cylindrical machining was analysed according to the principle of making a precise circle. In the study, a form of chucking-type preciison cylindrical machining was developed by combining an insensitive vibration cutting mechanism - using a main spindle system which features an air bearing - with superposition superfinishing. In the first process, the work is chucked on the main spindle and machined using a continuously and systematically pulsating cutting force. In the second process, the work is finished by a newly developed superposition superfinishing device which features equivalent grades of ultrasonic vibration stone. Key points of the techniques are a torsional vibration mode tool for producing accurate, high amplitude vibration of the cutting point, and a contrivance for making accurate movements of the superposition superfinishing device. Machined roundness of 0.1–0.2 μm and surface roughness of 0.03–0.09 μm Rmax were obtained with plain carbon steels, stainless steels and hardened steels (HRC 41, 53, 60). It is considered that turning to roundness ≈ 0, cylindricity ≈ 0 and surface roughness ≈ 0 can be realized by means of this new machining process and its lathe.  相似文献   

4.
This article describes the experimental investigation related to creation of holes in aerospace titanium alloy workpiece using static electrode machining and electrical discharge drilling (EDD) process. Special attachment for holding and rotating the tool electrode was developed and installed on electrical discharge machining (EDM) machine by replacing the original conventional tool holder provided on die sinking EDM. The effect of input parameters such as gap current, pulse on-time, duty factor and RPM of tool electrode on output parameters for average hole circularity (Ca) and average surface roughness (Ra) have been studied. It is observed that the effect of rotating electrode machining has considerable influence on the output parameters over stationary electrode machining. The micro-graphs and photographs of few selected samples were taken by SEM and metallurgical microscope, which also commensurate with the findings of the study.  相似文献   

5.
High-strength materials with complex shapes can be easily machined by electrical discharge machining process. In the present study, an attempt has been made to analyze the influence of wire electrode on Kerf width and workpiece surface roughness in wire EDM process. Due to its importance in the aircrafts and automobiles, Ti-6Al-4V alloy has been chosen as the workpiece material. The various experiments have been conducted based on a Taguchi L9 orthogonal array with various types of wire electrodes, such as conventional brass wire, zinc-coated wire and diffused coated brass wire. From the experimental results, it has been observed that diffused coated wire produced better surface finish with minimum kerf width compared to the other two wire electrodes. It has also been observed that the pulse off-time has more influent nature on machining characteristics such as surface roughness and kerf width.  相似文献   

6.
为改善快走丝电火花线切割加工的表面粗糙度,提高模具加工的质量和使用寿命,分析了快走丝电火花线切割加工条件中放电参数、工作液和电极丝对零件表面粗糙度的影响,并在此基础上提出了改善零件表面粗糙度的相应措施和方法。  相似文献   

7.
This study explores the feasibility of removing the recast layer formed on aluminum alloy cylindrical specimens machined by wire electrical discharge machining (WEDM) by using magnetic abrasive finishing (MAF). The WEDM is a thermal machining process capable of accurately machining parts with high hardness or complex shapes. The sparks produced during the WEDM process melt the metal’s surface. The molten material undergoes ultra-rapid quenching and forms a layer on the surface defined as recast layer. The recast layer may be full of craters and microcracks which reduce service life of materials tremendously, especially under fatigue loads in corrosive environments. This investigation demonstrates that MAF process, can improve the quality of WEDM machined surfaces effectively by removing the recast layer. The present work studies the effect of some parameters, i.e., linear speed, working gap, abrasive particle size, and finishing time on surface roughness and recast layer thickness using full factorial analysis. Three-level full factorial technique is used as design of experiments for studying the selected factors. In order to indicate the significant factors, the analysis of variance has been used. In addition, an equation based on regression analysis is presented to indicate the relationship between surface roughness and recast layer thickness of cylindrical specimens and finishing parameters. Experimental results show the influence of MAF process on recast layer removal and surface roughness improvement.  相似文献   

8.

Wire electrical discharge machining is a non-traditional cutting process for machining of hard and high strength materials. This study analyzed the effects of the main input parameters of wire electrical discharge machining of ASP30 steel (high alloyed Powder metallurgical [PM] high speed steel) as the workpiece on the material removal rate and surface roughness. The input parameters included spraying pressure and electric conductivity coefficient of the dielectric fluid, linear velocity of the wire and wire tension. The machined surface quality was evaluated using SEM pictures. Results indicated that increasing the spraying pressure of dielectric fluid leads to a higher material removal rate and surface roughness and that increasing the wire tension, linear velocity of wire, and electric conductivity of the dielectric fluid decreases the material removal rate and surface roughness.

  相似文献   

9.
10.
This study investigates the feasibility of improving surface integrity via a novel combined process of electrical discharge machining (EDM) with ball burnish machining (BBM) using the Taguchi method. To provide burnishing immediately after the EDM process, ZrO2 balls were attached to the tool electrode in the experiments. To verify the optimal process, three observed values, i.e. material removal rate, surface roughness, and improvement ratio of surface roughness were chosen. In addition, six independent parameters were adopted for evalu-ation by the Taguchi method. From the ANOVA and S/N ratio response graph, the significant parameters and the optimal combination level of machining parameters were obtained. Experimental results indicate that the combined process effectively improves the surface roughness and eliminates the micro pores and cracks caused by EDM. Therefore, the combination of EDM and BBM is a feasible process by which to obtain a fine-finishing surface and achieve surface modification.  相似文献   

11.
Maraging steel (MDN 300) exhibits high levels of strength and hardness. Optimization of performance measures is essential for effective machining. In this paper, Taguchi method, used to determine the influence of process parameters and optimization of electrical discharge machining (EDM) performance measures on MDN 300 steel, has been discussed. The process performance criteria such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) were evaluated. Discharge current, pulse on time, and pulse off time have been considered the main factors affecting EDM performance. The results of the present work reveal that the optimal level of the factors for SR and TWR are same but differs from the optimum levels of the factors for MRR and RWR. Further, discharge current, pulse on time, and pulse off time have been found to play a significant role in EDM operations. Detailed analysis of structural features of machined surface was done by using scanning electron microscope (SEM) to understand the influence of parameters. SEM of electrical discharge machining surface indicates that at higher discharge current and longer pulse on duration give rougher surface with more craters, globules of debris, pockmarks or chimneys, and microcracks than that of lower discharge current and lower pulse on duration.  相似文献   

12.
Machining parameters tables provided by the machine tool manufacturers often do not meet the operator requirements and sometimes even do not provide efficient guidelines to manufacturing engineers. Hence, a suitable selection of machining parameters of CNC wire cut electrical discharge machining (EDM) process is necessary. This paper present a reliable set of parameters that demonstrate versatility, and numerous and diverse range based on experience and technology. We offer an experimental investigation to determine the parameters setting during the machining of aluminium-reinforced silicon carbide metal matrix composite (Al/SiC-MMC). The Taguchi method, a powerful tool for experimental design, is used to optimize the CNC-wire cut-EDM parameters. According to the Taguchi quality design Concept, a L18 (21×37) mixed orthogonal array was used to determine the S/N ratio, and an analysis of variance (ANOVA) and the F-test values were used to indicate the significant machining parameters affecting the machining performance. From experimental results and through ANOVA and F-test values, the significant factors are determined for each machining performance criteria, such as the metal removal rate, surface roughness, gap current and spark gap (gap width). Considering these significant CNC wire cut-EDM parameters, verification of the improvement in the quality characteristics for machining Al/SiC-MMC was made with a confirmation test with respect to the chosen initial or reference parameter setting. Mathematical models relating to the machining performance are established using the Gauss elimination method for the effective machining of Al/SiC-MMC. Yet again, confirmation test results also show that the developed mathematical models are appropriate for the effective machining of Al/SiC-MMC. The determined optimal combination of CNC-wire cut-EDM parameters obtained from the study satisfy the real requirement of quality machining of Al/SiC MMC in practice.  相似文献   

13.
A micro rod machining method which can switch between electrical discharge machining (EDM) and electrochemical machining (ECM) by attaching/detaching a diode to/from a bipolar pulse generator in parallel to the working gap was newly developed using a wire electrode made of tungsten. The problem of the wire electrode wear was eliminated by the use of the wire electrochemical turning (WECT) method in which the tungsten wire electrode is continuously running. The ultra-short bipolar pulse current was generated by the electrostatic induction feeding method where a pulse voltage is coupled to the working gap through a feeding capacitance. The machining characteristics of three types of wire guide; disk-shaped WC guide, laminated wire guide and cylindrical acrylic guide, were studied. The experimental results showed that the cylindrical acrylic guide has the best machining characteristics without the influence of guide wear and with less stray current flowing through the working gap. Using the cylindrical acrylic guide, the influences of the feeding capacitance C1, and the total amplitude of the pulse voltage on the machining characteristics were studied. Finally, a stainless steel SUS 304 micro-rod with a high aspect ratio of 14 was fabricated efficiently by using the EDM and ECM modes for rough and finish machining in sequence with the same setup, pulse generator, and neutral electrolyte.  相似文献   

14.
Insulating zirconia has attracted increasing attention in industrial applications due to its excellent hardness, chemical stability, and corrosion resistance. However, insulating zirconia is difficult to machine by using traditional cutting techniques. In this paper, the high-speed wire electrical discharge machining (HS-WEDM) process of insulating zirconia is carried out with the assisting electrode method. The machining characteristics of insulating zirconia with HS-WEDM process are investigated, which include the study of effect of open-circuit voltage (U) on machining speed, discharge gap, surface roughness, surface microtopography, and electrical discharge status. The experimental results indicate that when U is changed from 90 to 150 V, the machining speed increases from 1.02 to 2.61 mm2/min and the machining gap increases from 15.55 to 26.67 μm. With the increasing U, the percentage of electrical discharge with high resistance increases, the percentage of electrical discharge with low resistance changes only slightly, and the percentage of short circuit with low resistance decreases. Moreover, when grooves are machined into transverse and longitudinal direction of the workpiece, the two machined surfaces of one grove present different surface characteristics.  相似文献   

15.
混粉电火花技术在粗加工中的应用研究   总被引:1,自引:0,他引:1  
在对混粉电火花加工机理进行系统研究的基础上 ,对混粉电火花在粗加工中的加工效率和加工表面粗糙度进行实验研究。结果表明 ,通过合理选择放电参数 ,混粉电火花在相近加工表面粗糙度下 ,能够显著提高加工效率 ,从而为混粉电火花加工技术在粗加工中应用提供依据  相似文献   

16.
《Wear》2002,252(7-8):644-653
The stereographic scanning electron microscopy (SEM) imaging was used to investigate the wear mechanism in wire electrical discharge machining (EDM) truing of metal bond diamond wheels for ceramic grinding. A piece of the grinding wheel was removed after truing and grinding to enable the examination of wheel surface and measurement of diamond protrusion heights using a SEM and stereographic imaging software. The stereographic SEM imaging method was calibrated by comparing with the profilometer measurement results. On the wheel surface after wire EDM truing and before grinding, some diamond grain protruding heights were measured in the 32 μm level. Comparing to the 54 μm average size of the diamond grain, this indicated that over half of the diamond was exposed. During the wire EDM process, electrical sparks occur between the metal bond and EDM wire, which leaves the diamond protruded in the gap between the wire electrode and wheel. These protruding diamond grains with weak bond to the wheel were fractured under a light grinding condition. After heavy grinding, the diamond protrusion heights were estimated in the 5–15 μm range above the wear flat. A cavity created by grinding debris erosion wear of the wheel bond could be identified around the diamond grain.  相似文献   

17.
Electric discharge machining (EDM) has achieved remarkable success in the manufacture of conductive ceramic materials for the modern metal industry. Mathematical models are proposed for the modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic which are developed using the response surface methodology (RSM) to explain the influences of four machining parameters (the discharge current, pulse on time, duty factor and open discharge voltage) on the performance characteristics of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The experiment plan adopts the centered central composite design (CCD). The separable influence of individual machining parameters and the interaction between these parameters are also investigated by using analysis of variance (ANOVA). This study highlights the development of mathematical models for investigating the influences of machining parameters on performance characteristics and the proposed mathematical models in this study have proven to fit and predict values of performance characteristics close to those readings recorded experimentally with a 95% confidence interval. Results show that the main two significant factors on the value of the material removal rate (MRR) are the discharge current and the duty factor. The discharge current and the pulse on time also have statistical significance on both the value of the electrode wear ratio (EWR) and the surface roughness (SR).  相似文献   

18.
Nowadays, the demand for high product quality focuses extensive attention to the quality of machined surface. The (CNC) milling machine facilities provides a wide variety of parameters set-up, making the machining process on the glass excellent in manufacturing complicated special products compared with other machining processes. However, the application of grinding process on the CNC milling machine could be an ideal solution to improve the product quality, but adopting the right machining parameters is required. Taguchi optimization method was used to estimate optimum machining parameters with standard orthogonal array L16 (44) to replace the conventional trial and error method as it is time-consuming. Moreover, analyses on surface roughness and cutting force are applied which are partial determinant of the quality of surface and cutting process. These analyses are conducted using signal to noise (S/N) response analysis and the analysis of variance (Pareto ANOVA) to determine which process parameters are statistically significant. In glass milling operation, several machining parameters are considered to be significant in affecting surface roughness and cutting forces. These parameters include the lubrication pressure, spindle speed, feed rate, and depth of cut as control factors. While, the lubrication direction is considered as a noise factor in the experiments. Finally, verification tests are carried out to investigate the improvement of the optimization. The results showed an improvement of 49.02% and 26.28% in the surface roughness and cutting force performance, respectively.  相似文献   

19.
Electrical discharge machining (EDM) is a well-known nontraditional manufacturing process to machine the difficult-to-machine (DTM) materials which have unique hardness properties. Researchers have successfully performed hybridization to improve this process by incorporating powders into the EDM process known as powder-mixed EDM process. This process drastically improves process efficiency by increasing material removal rate, micro-hardness, as well as reducing the tool wear rate and surface roughness. EDM also has some input parameters, including pulse-on time, dielectric levels and its type, current setting, flushing pressure, and so on, which have a significant effect on EDM performance. However, despite their positive influence, investigating the effects of these parameters on environmental conditions is necessary. Most studies demonstrate the use of kerosene oil as dielectric fluid. Nevertheless, in this work, the authors highlight the findings with respect to three different dielectric fluids, including kerosene oil, EDM oil, and distilled water using one-variable-at-a-time approach for machining as well as environmental aspects. The hazard and operability analysis is employed to identify the inherent safety factors associated with powder-mixed EDM of WC-Co.  相似文献   

20.
In this study, the performance of Si wafer machining by employing the die-sinking microelectrical discharge machining technique is reported. Specifically, the machining performance was examined on both high- (1–10 Ω cm) and low-resistivity (0.001–0.005 Ω cm) Si wafers by means of using a range of discharge energies. In this regard, the machining time, material removal rate, surface quality, surface roughness, and material mapping, which are categorized among the important properties in micromachining, have been investigated. In order to analyze the surface properties and to perform the elemental analysis, the scanning electron microscope and energy-dispersive X-ray spectroscopy were used. In contrast, the 3D surface profiler was used to evaluate the roughness of machined surface. The results of this experimental study revealed that the electrical resistivity and discharge energy parameter of microelectrical discharge machining had a great influence on the Si wafer machining performances. The observations in this study indicated a decrease in machining time, high material removal rate, and high surface roughness with an increased discharge energy values. Overall, it was learnt that the minimum amount of energy required to machine Si wafer was 5 μJ for both low and high-resistivity Si. In addition, the highest material removal of 5.842 × 10?5 mm3/s was observed for low-resistivity Si. On the contrary, the best surface roughness, R a, of 0.6203 μm was achieved for high-resistivity Si and it also pointed to a higher carbon percentage after the machining process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号