首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limited feedback unitary precoding for spatial multiplexing systems   总被引:7,自引:0,他引:7  
Multiple-input multiple-output (MIMO) wireless systems use antenna arrays at both the transmitter and receiver to provide communication links with substantial diversity and capacity. Spatial multiplexing is a common space-time modulation technique for MIMO communication systems where independent information streams are sent over different transmit antennas. Unfortunately, spatial multiplexing is sensitive to ill-conditioning of the channel matrix. Precoding can improve the resilience of spatial multiplexing at the expense of full channel knowledge at the transmitter-which is often not realistic. This correspondence proposes a quantized precoding system where the optimal precoder is chosen from a finite codebook known to both receiver and transmitter. The index of the optimal precoder is conveyed from the receiver to the transmitter over a low-delay feedback link. Criteria are presented for selecting the optimal precoding matrix based on the error rate and mutual information for different receiver designs. Codebook design criteria are proposed for each selection criterion by minimizing a bound on the average distortion assuming a Rayleigh-fading matrix channel. The design criteria are shown to be equivalent to packing subspaces in the Grassmann manifold using the projection two-norm and Fubini-Study distances. Simulation results show that the proposed system outperforms antenna subset selection and performs close to optimal unitary precoding with a minimal amount of feedback.  相似文献   

2.
Recent work has shown that multiple-input multiple-output (MIMO) systems with multiple antennas at both the transmitter and receiver are able to achieve great capacity improvement. In such systems, it is desirable to select a subset of the available antennas so as to reduce the number of radio frequency (RF) chains. This paper addresses the problem of antenna selection in correlated channels. We consider a narrowband communication system with M transmit and N receive antennas. We present the criterion for selecting the optimal L/sub t/ out of M transmit and L/sub r/ out of N receive antennas in terms of capacity maximization, assuming that only the long-term channel statistics, instead of the instantaneous channel-state information, are known. Simulations will be used to validate our theoretical analysis and demonstrate that the number of required RF chains can be significantly decreased using our proposed selection strategy, while achieving even better performance than the conventional MIMO system without antenna selection.  相似文献   

3.
Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection   总被引:3,自引:0,他引:3  
We introduce a novel soft antenna selection approach for multiple antenna systems through a joint design of both RF (radio frequency) and baseband signal processing. When only a limited number of frequency converters are available, conventional antenna selection schemes show severe performance degradation in most fading channels. To alleviate those degradations, we propose to adopt a transformation of the signals in the RF domain that requires only simple, variable phase shifters and combiners to reduce the number of RF chains. The constrained optimum design of these shifters, adapting to the channel state, is given in analytical form, which requires no search or iterations. The resulting system shows a significant performance advantage for both correlated and uncorrelated channels. The technique works for both transmitter and receiver design, which leads to the joint transceiver antenna selection. When only a single information stream is transmitted through the channel, the new design can achieve the same SNR gain as the full-complexity system while requiring, at most, two RF chains. With multiple information streams transmitted, it is demonstrated by computer experiments that the capacity performance is close to optimum.  相似文献   

4.
将射频开关和Koch分形振子天线相结合,设计了一种可工作在多个频段的射频开关加载的Koch振子天线。通过控制射频开关的通断,可使所设计的天线工作在几个不同的频段。所设计的Koch振子天线与普通振子天线相比,其长度有较大幅度的减小。HFSS软件仿真表明所设计的天线在几个不同的频段都具有良好的性能。  相似文献   

5.
Conventional multi-antenna receiver front-ends require multiple RF/baseband chains and analog-to-digital converters (ADC). This increases power consumption and chip area substantially. In this letter, we introduce a new Code-Modulated Path-Sharing Multi-Antenna (CPMA) receiver architecture suitable for any multi-antenna scheme including spatial multiplexing, spatial diversity, and beamforming. The receiver uses code modulation to distinguish the antenna signals before combining them in the analog domain. The combined signal propagates through shared-path blocks and all the original signals are later recovered in the digital domain for further processing. Due to the spread spectrum nature of code modulation, a larger bandwidth is needed for the blocks in the shared path. To alleviate this effect, the use of non-orthogonal coding is examined. An effective channel matrix is derived and the system capacity is evaluated in terms of the cross-correlation between signature codes. Implementation and code selection issues are discussed. Analysis and simulation results indicate that by properly selecting non-orthogonal code sets, the spreading factor, and therefore, the overall analog signal bandwidth is reduced while incurring minimal performance degradation.  相似文献   

6.
Micromachining techniques using closely spaced holes have been used underneath a microstrip antenna on a high dielectric-constant substrate (ϵr=10.8) to synthesize a localized low dielectric-constant environment (ϵr=2.3). The measured radiation efficiency of a microstrip antenna on a micromachined 635-μm thick ϵr=10.8 Duroid 6010 substrate increased from 48±3% to 73±3% at 12.8-13.0 GHz (including 3.3-cm feed line losses). We believe that this technique can be applied to millimeter-wave antennas (microstrip, dipoles, slots, etc.) on silicon and GaAs substrates to result in relatively wideband (3-6%) monolithic microwave integrated circuits (MMIC) active antenna modules for phased-arrays and collision-avoidance systems  相似文献   

7.
Antenna combining for the MIMO downlink channel   总被引:4,自引:0,他引:4  
A multiple antenna downlink channel where limited channel feedback is available to the transmitter is considered. In a vector downlink channel (single antenna at each receiver), the transmit antenna array can be used to transmit separate data streams to multiple receivers only if the transmitter has very accurate channel knowledge, i.e., if there is high-rate channel feedback from each receiver. In this work it is shown that channel feedback requirements can be significantly reduced if each receiver has a small number of antennas and appropriately combines its antenna outputs. A combining method that minimizes channel quantization error at each receiver, and thereby minimizes multi-user interference, is proposed and analyzed. This technique is shown to outperform traditional techniques such as maximum-ratio combining because minimization of interference power is more critical than maximization of signal power in the multiple antenna downlink. Analysis is provided to quantify the feedback savings, and the technique is seen to work well with user selection and is also robust to receiver estimation error.  相似文献   

8.
Yeum  I. Park  J. Kim  J. Wee  J. Kim  B. Jung  C. 《Electronics letters》2010,46(1):11-13
The quad-band antenna, which is composed of two compact dual-band antennas, is presented for potable media player (PMP) applications. The antenna for the broadcasting dual-band (DVB-H UHF; 470 - 862 - MHz, L; 1452 - 1492 - MHz) is composed of a planar inverted F-shaped antenna with an input matching circuit. The antenna for the communication dual-band (WLAN 11b; 2.4 - 2.5 - GHz, 11a; 5.15 - 5.8 - GHz) is composed of a folded dipole antenna with enhanced mutual coupling. The proposed antennas are contact with the PMP case (?r = 3.2) which is used as a substrate for size reduction and compact design.  相似文献   

9.
Performance of spatial multiplexing multiple-input multiple-output (MIMO) wireless systems can be improved with channel state information (CSI) at both ends of the link. This paper proposes a new linear diagonal MIMO transceiver, referred to as co-ordinate interleaved spatial multiplexing (CISM). With CSI at transmitter and receiver, CISM diagonalizes the MIMO channel and interleaves the co-ordinates of the input symbols (from rotated QAM constellations) transmitted over different eigenmodes. The analytical and simulation results show that with co-ordinate interleaving across two eigenmodes, the diversity gain of the data stream transmitted over the weaker eigenmode becomes equal to that of the data transmitted on the stronger eigenmode, resulting in a significant improvement in the overall diversity. The diversity-multiplexing tradeoff (DMT) is analyzed for CISM and is shown that it achieves higher diversity gain at all positive multiplexing gains compared to existing diagonal transceivers. Over rank n MIMO channels, with input symbols from rotated n-dimensional constellations, the DMT of CISM is a straight line connecting the endpoints (0,NtNr) and (min{Nt,Nr}, 0), where Nt, and Nr} are the number of transmit and receive antennas, respectively.  相似文献   

10.
Multiple receive antennas with optimal combining have been known to improve error performance over fading multipath channels by providing spatial diversity. This benefit is obtained at the cost of greatly increased system complexity due to the need for multiple RF chains and signal combiners. Best antenna selection is a technique that can provide multiple antenna gains with only a single RF chain and no combiners. Best antenna selection is complicated by frequency selectivity in orthogonal frequency division multiplexing (OFDM) as the signal at any one antenna may not be the best at all subcarriers. In this paper, we propose a novel technique for best antenna selection in coded OFDM. To simplify the receiver, we assume a block fading model for the underlying frequency selective channel. The best antenna will then determined based on coding theorems known for block fading channels. Our simulations show significant improvement in coded OFDM performance over existing techniques.  相似文献   

11.
A two-element bow-tie dipole antenna and a single-element bow-tie slot antenna fabricated on a high dielectric constant (εr=10.2) substrate are introduced for applications at millimetre-wave frequencies. The former antenna provides 2 GHz bandwidth at 35 GHz and the latter 1.3 GHz at 32.7 GHz. With a broadband match, these antennas would yield significantly higher bandwidths  相似文献   

12.
A 2-GHz single-chip direct conversion receiver achieves a 3.0-dB double-sideband noise figure, -14-dBm IIP3 and +17-dBm IIP2 with 60-mW power consumption from a 2.7-V supply. The receiver is targeted for the third generation UTRA/FDD WCDMA system. The low power consumption has been achieved with a proper partitioning and by avoiding buffering between blocks. In the differential RF front end, current boosted quadrature mixers follow the variable-gain low-noise amplifier. At the baseband, on-chip ac-coupled highpass filters are utilized to implement amplification with variable gain having small transients related to gain steps. The outputs of the analog channel selection filters are sampled directly by the two single-amplifier 6-bit pipeline A/D converters. The spurious tones due to the feedthrough of clock harmonics to the RF input increase the noise figure less than 0.1 dB. The receiver has been fabricated with a 0.35-μm 45-GHz fT SiGe BiCMOS process  相似文献   

13.
基于MIMO系统的天线选择   总被引:1,自引:0,他引:1  
李对  王保云 《信息技术》2006,30(12):19-22
多天线MIMO(Multiple Input Multiple Output)系统利用多个收、发天线有效地改善无线通信系统性能,提高系统容量,增强系统可靠性。然而,由于使用多天线同时收发,这要求发射机和接收机使用与天线一样多的射频链路,增加了系统成本和复杂度。使用天线选择技术可以降低系统成本和复杂度,同时保留MIMO系统的优越性能。文中首先介绍了MIMO系统的实现方式,然后讨论天线选择的方法及性能,最后提出天线选择技术还存在的问题,并得出相关的结论。  相似文献   

14.
Antenna selection for multiple-input multiple-output (MIMO) where only a subset of antennas at the transmitter and/or receiver are activated for signal transmission is a practical technique for the realization of full diversity. Despite extensive research, closed-form capacity expressions for MIMO systems employing transmit antenna selection (TAS) and orthogonal space-time block codes (OSTBCs) are not available. We thus derive the exact closed-form capacity expressions when an OSTBC is employed and N transmit antennas out of total Lt antennas are selected for transmission. The expressions are valid for a frequency-flat Rayleigh fading MIMO channel and avoid numerical integration methods  相似文献   

15.
基于QPSK的智能天线固定多波束基带DBF算法   总被引:3,自引:0,他引:3  
姜永权  魏月 《电子学报》2003,31(7):1114-1117
射频(RF)波束形成算法,难以直接采用数字信号处理(DSP)技术,实时完成数字波束形成(DBF)计算.对于相移键控(PSK)调制方式,本文认为RF波束形成算法可等效在基带实现.针对四相相移键控(QPSK)调制方式,本文提出了一种新的智能天线固定多波束基带DBF算法.与RF波束形成算法相比,提出的算法可实现同样的辐射方向图,但需要的计算量却大幅度地降低.基带DBF算法,使智能天线的实现更为简单、应用更为灵活、性能更为优良,对推动智能天线技术实用化发展具有重大意义.  相似文献   

16.
Future cellular systems will employ spatial multiplexing with multiple antennas at both the transmitter and receiver to take advantage of large capacity gains. In such systems it will be desirable to select a subset of available transmit antennas for link initialization, maintenance or handoff. We present a criterion for selecting the optimal antenna subset when linear, coherent receivers are used over a slowly varying channel. We propose use of the post-processing SNRs (signal to noise ratios) of the multiplexed streams whereby the antenna subset that induces the largest minimum SNR is chosen. Simulations demonstrate that our selection algorithm also provides diversity advantage thus making linear receivers useful over fading channels  相似文献   

17.

Because millimeter wave (mmWave) systems can span notably wide spectral bands, mmWave systems are expected to dominate fifth-generation (5G) communication systems. Due to the short wave-length of mmWave radiation, multiple-input multiple-output (MIMO) systems can use massive antennas and precoding technology to overcome signal attenuation in mmWave channels. However, the cost and power consumption of radio frequency (RF) chains would increase substantially with the number of antennas. Hence, hybrid beamforming was proposed to reduce the number of RF chains in massive MIMO systems. Hybrid beamforming involves RF beamforming matrix construction and baseband precoding matrix derivation. This study focused on the design and implementation of an algorithm for the RF beamforming matrix construction for mobile environments. Accordingly, this study presents a mixture particle filter that exploits the temporal continuity of beam clusters in a mobile mmWave channel to reduce the computational complexity of RF beamforming matrix construction. Moreover, this beam-tracking particle filter is based on parallel processing architecture to support the tracking of multiple beam clusters in the mmWave channel. Finally, the beam-tracking particle filter was implemented on a field-programmable gate array platform and was verified in a hybrid beamforming system for mmWave MIMO systems. The particle filter processor achieved a maximal throughput of 9.198k matrices/s with a clock rate of 192 MHz, which could support a speed of up to 88.5 km/h for mobile users.

  相似文献   

18.
在多径衰落环境中, MIMO系统的信道容量随天线数的增加呈线性增加,发射/接收天线选择方法能以很小的性能损失换取射频成本的大幅度降低,使MIMO系统不完全受射频成本的限制。为快速选择出使系统容量最优的发射/接收天线子集,该文提出一种快速天线选择算法的改进算法。该算法通过实时更新优化参数,大大降低计算复杂度。仿真结果表明,该算法在不影响系统容量的情况下大大减少了计算时间。  相似文献   

19.
A 30 dBm ultra-low insertion loss CMOS transmit-receive switch fully integrated with an 802.11b/g/n transceiver front-end is demonstrated. The switch achieves an insertion loss of 0.4 dB in transmit mode and 0.1 dB in receive mode. The entire receiver chain from antenna to baseband output achieves a measured noise figure of 3.6 dB at 2.4 GHz. The switch has a P1dB greater than 30 dBm by employing a substrate isolation technique without using deep n-well technology. The switch employs a 1.2 V supply and occupies 0.02 mm2 of die area.  相似文献   

20.
In this correspondence, we present a comprehensive performance analysis of orthogonal space-time block codes (STBCs) with receive antenna selection. For a given number of receive antennas M, we assume that the receiver uses the best L of the available M antennas, where, typically, L/spl les/M. The selected antennas are those that maximize the instantaneous received signal-to-noise ratio (SNR). We derive explicit upper bounds on the bit-error rate (BER) performance of the above system for any M and L, and for any number of transmit antennas. We show that the diversity order, with antenna selection, is maintained as that of the full complexity system, whereas the deterioration in SNR is upper-bounded by 10log/sub 10/(M/L) decibels. Furthermore, we derive a tighter upper bound for the BER performance for any N and M when L=1, and derive an expression for the exact BER performance for the Alamouti scheme when L=1. We also present simulation results that validate our analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号