共查询到20条相似文献,搜索用时 62 毫秒
1.
相关向量机(RVM)分类法使用概率输出克服了支持向量机(SVM)识别速率低的缺点,并且具有更好的稀疏性。但在与文本无关的话者辨别中,大量训练样本数据体现了RVM在模型训练时计算量与内存需求过大的缺点。针对以上特点,提出基于GMM统计特征参数与RVM融合的与文本无关的语者辨别系统,既有效地提取话者特征信息,解决大样本数据下的RVM训练问题,又结合统计模型鲁棒性高和分辨模型辨别效果好的优点。实验结果证明,该系统比基本的GMM系统具有更优的错误辨别率,比GMM/SVM系统具有更高的稀疏性。 相似文献
2.
提出一种基于话者无关模型的说话人转换方法.考虑到音素信息共同存在于所有说话人的语音中,假设存在一个可以用高斯混合模型来描述的话者无关空间,且可用分段线性变换来描述该空间到各说话人相关空间之间的映射关系.在一个多说话人的数据库上,用话者自适应训练算法来训练模型,并在转换阶段使用源目标说话人空间到话者无关空间的变换关系来构造源与目标之间的特征变换关系,快速、灵活的构造说话人转换系统.通过主观测听实验来验证该算法相对于传统的基于话者相关模型方法的优点. 相似文献
3.
研究语音动态特征参数提取问题,在话者语音识别过程中,动态特征参数可以有效提高识别率.但是传统算法在其提取过程中存在大量干扰冗余信息,造成了识别率降低并带来运算速度的降低.为解决上述副作用,提出在说话人识别系统中,使用一种动态时频倒谱系数参数的方法.上述方法在不减少反应话者个体特征分布特性的前提下,可消除冗余信息并降低样本特征的维度.利用上述方法提取语音特征参数并输入混合高斯-通用背景模型进行说话人语音分类.在Matlab上仿真结果表明,动态时频倒谱系数可有效改进话者语音识别系统的识别正确率. 相似文献
4.
滑动时间窗算法是飞机终端区排序算法中非常重要的一种.介绍了飞机终端区排序中滑动时间窗算法的思想,实现了滑动时间窗算法的Matlab编程,给出了编程代码,为进一步研究滑动时间窗算法提供了基础,通过算例仿真验证了所设计算法的有效性、优越性. 相似文献
5.
针对信道失配和统计模型区分性不足而导致话者确认性能下降问题,文中提出一种将因子分析信道失配补偿与支持向量机模型相结合的文本无关话者确认方法。在SVM话者模型前端采用高斯混合模型-背景模型(GMM-UBM)方法对语音特征参数进行聚类和升维,并利用因子分析(FA)方法,对聚类获得的超矢量进行信道补偿后作为基于SVM话者确认的输入特征,从而有效解决SVM用于文本无关话者确认的大样本、升维问题,以及信道失配对性能影响问题。在NIST 06数据库上实验结果表明,文中方法比未做失配补偿的GMM-UBM系统、GMM-SVM系统在等误识率上有50%以上的改善,比做了FA失配补偿的GMM-UBM系统也有15。8%的改善。 相似文献
6.
近年来,随着信号的稀疏性理论越来越受到人们的关注,稀疏表征分类器也作为一种新型的分类算法被应用到话者识别系统中。该模型的基本思想是:只要超完备字典足够大,任意待测样本都能够用超完备字典进行线性表示。基于信号的稀疏性理论,未知话者的向量系数,即稀疏解可以通过L1范数最小化获取。超完备字典则可视为语音特征向量在高斯混合模型-通用背景模型(GMM-UBM)上进行MAP自适应而得到的大型数据库。采用稀疏表征模型作为话者辨认的分类方法,基于TIMIT语料库的实验结果表明,所采用的话者辨认方法,能够大大提高说话人识别系统的性能。 相似文献
7.
8.
9.
针对在滑动时间窗中发现稠密子图的问题,提出一种有效的动态算法,结合时间窗将网络时间线划分为k个非重叠的间隔,间隔内包含最大密度的子图.算法输入是一个边流,输出是一系列稠密子图及相应的时间间隔.现有技术在图更新时需要迭代整个图,所提算法仅影响图的有限区域,只需要局部更新稠密子图.结合理论分析,证明了该算法比基线KGOPT... 相似文献
10.
支持向量机作为说话人建模方法用于与文本无关的话者确认研究时,如何提取适合SVM训练和测试的特征参数直接影响话者确认系统的性能和效率.根据高斯混合模型(GMM)聚类能力强的特点,提出一种基于自适应GMM聚类的说话人特征参数提取方法,通过自适应的GMM聚类将大样本、混叠严重的M FCC特征参数聚为小样本的、代表说话人个性特征的特征参数,并用于与文本无关的SVM话者确认.在N IST0′4 1side-1side数据库上的实验表明了该方法的有效性. 相似文献
11.
12.
基于高斯混合模型(GaussianMixtureModel,M)间差别的方法是进行说话人聚类的常用的一类方法。该文GM提出两种新颖的GMM差别度量,“类散度”和GMM的相互概率。“类散度”即模型间“离散度”与模型内“离散度”之比,在计算中综合考虑了GMM各个胞腔的权值、均值及方差的影响,全面地反映了高斯混合模型参数的差别。GMM的相互概率即其中一个GMM的参数在另一个GMM下的概率。实验证明,两种方法均能很好地描述GMM间的差别,在说话人聚类实验中表现良好。 相似文献
13.
14.
给出了一个基于HMM和GMM双引擎识别模型的维吾尔语联机手写体整词识别系统。在GMM部分,系统提取了8-方向特征,生成8-方向特征样式图像、定位空间采样点以及提取模糊的方向特征。在对模型精细化迭代训练之后,得到GMM模型文件。HMM部分,系统采用了笔段特征的方法来获取笔段分段点特征序列,在对模型进行精细化迭代训练后,得到HMM模型文件。将GMM模型文件和HMM模型文件分别打包封装再进行联合封装成字典。在第一期的实验中,系统的识别率达到97%,第二期的实验中,系统的识别率高达99%。 相似文献
15.
16.
17.
针对语音信号的非结构化特点,提出了一种基于量子隧穿效应的说话人真伪鉴别方法。以量子隧穿效应为理论依据,首先,在分析语音信号分帧的量子特性基础上,将每一帧语音信号看作一个量子态,实现算法的量子化;然后,利用势垒能分离能量的特性,通过构建势垒组以提取信号的能量谱特征,并以此作为特征参数;最后,通过高斯混合模型(GMM)进行语音信号建模,完成说话人的真伪鉴别。仿真结果表明,相对于传统方法,利用量子隧穿效应理论实现说话人鉴别可以有效降低算法的复杂度,提高识别的识别率和可靠性,为量子信息理论和说话人真伪鉴别方法提供了新的研究途径。 相似文献
18.
研究了基于美尔倒谱特征参数及高斯混合模型的文本无关的说话人识别系统,为了提高噪声环境下识别系统的识别率,从两个角度研究改善该系统抗噪性能的方法,即利用语音识别将文本无关的系统转化为文本有关的说话人识别方法和通过选择鲁棒性较强的帧进行说话人识别的方法,分析了以上方法对系统识别性能的改善作用,并通过实验验证上述方法确实可以提高系统在噪声环境下的识别率。 相似文献
19.
为了解决传统高斯混合模型(GMM)对初值敏感,在实际训练中极易得到局部最优参数的问题,提出了一种采用微粒群算法优化GMM参数的新方法。该方法将最大似然估计融入到微粒群算法迭代过程中,形成了新的混合算法。它利用微粒群算法的全局优化性及最大似然估计的局部寻优性求解高斯混合模型的参数,以提高参数精度。说话人辨认实验表明,与传统的方法相比,新方法可以得到更优的模型参数,使得系统的识别率进一步提高。 相似文献