首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
研究表明,可采用包括新的新的浮选药剂系统的联合工艺来提高铁矿石精矿,低品位锰矿产品的质量和分选钢铁联合企业产出的含石墨的灰渣。现已发现,在无磁絮凝作用的情况下,氧化铁矿石精矿的阳离子反浮选和低品位锰矿石产品的直接浮选效果很差,后者需要采用具有絮凝性质的调整剂。提出的调整剂是聚合物协合混合药剂,即聚丙烯酰胺与羧甲基纤维素和聚丙烯酰胺与工业木素磺酸盐的混合药剂。  相似文献   

2.
江苏某坡洪积型钛铁矿石TiO2品位2.63%,钛铁矿嵌布粒度细,矿石矿物组成复杂,黏土含量高。为开发利用该矿石资源,在工艺矿物学性质研究的基础上,首先进行了重选预选工艺和磁选预选工艺对比试验,磁选预选工艺抛除尾矿产率大且TiO2损失率较低。对磁选预选精矿在一段磨矿细度为-0.076 mm占60%、二段磨矿细度为-0.076 mm占90%条件下进行二阶段磨矿—阶段磁选试验,TiO2品位由6.78%提高至14.53%;二段强磁精矿采用螺旋溜槽重选,重选精矿以硫酸为pH调整剂、草酸为抑制剂、水玻璃为分散剂、MOH为捕收剂,经1粗4精1扫闭路浮选,能获得TiO2品位48.26%、回收率13.69%的钛精矿。因此,采用原矿强磁预选—预选精矿二阶段磨矿阶段磁选—磁选精矿螺旋溜槽重选—重选精矿浮选的联合选矿工艺,最终能获得TiO2品位高于48%的合格钛精矿。试验结果可以为坡洪积型钛铁矿石的开发利用提供参考依据。  相似文献   

3.
针对海南儋州某褐铁矿矿石性质,采用阶段磨矿多段分选工艺,进行了强磁选、絮凝浮选、磁化焙烧及弱磁选等选矿试验研究。第一段磨矿细度为-0.074 mm68%的原矿经一次强磁粗扫选,混合精矿进入二次磨矿,-0.074mm占95%的磨矿产品絮凝去泥后进入混合胺反浮选,浮选精矿再磁化焙烧—弱磁选,可得到铁品位60.45%、回收率52.48%的最终精矿。  相似文献   

4.
江苏某坡洪积型钛铁矿石TiO2品位2.63%,钛铁矿嵌布粒度细,矿石矿物组成复杂,黏土含量高。为开发利用该矿石资源,在工艺矿物学性质研究的基础上,首先进行了重选预选工艺和磁选预选工艺对比试验,磁选预选工艺抛除尾矿产率大且TiO2损失率较低。对磁选预选精矿在一段磨矿细度为-0.076 mm占60%、二段磨矿细度为-0.076 mm占90%条件下进行二阶段磨矿-阶段磁选试验,TiO2品位由6.78%提高至14.53%;二段强磁精矿采用螺旋溜槽重选,重选精矿以硫酸为pH调整剂、草酸为抑制剂、水玻璃为分散剂、MOH为捕收剂,经1粗4精1扫闭路浮选,能获得TiO2品位48.26%、回收率13.69%的钛精矿。因此,采用原矿强磁预选-预选精矿二阶段磨矿阶段磁选-磁选精矿螺旋溜槽重选-重选精矿浮选的联合选矿工艺,最终能获得TiO2品位高于48%的合格钛精矿。试验结果可以为坡洪积型钛铁矿石的开发利用提供参考依据。  相似文献   

5.
辽宁某含铁低品位磷矿石中可回收元素为磷和铁,磷品位2.17%,铁品位11.50%,磷和铁主要以磷灰石和磁铁矿形式存在。试验采用浮选-磁选联合流程,浮选为一粗一扫二精流程,在磨矿细度为-0.074mm72%的条件下,以碳酸钠为pH值调整剂、水玻璃为抑制剂并使用复合捕收剂,获得磷品位为35.25%、磷回收率为93.71%的磷精矿。磷浮选尾矿经磁选和精矿再磨磁选,得到TFe含量66.21%、TFe回收率55.72%的铁精矿。  相似文献   

6.
针对海南儋州某褐铁矿矿石性质,采用阶段磨矿多段分选工艺,进行了强磁选、絮凝浮选、磁化焙烧及弱磁选等选矿试验研究。第一段磨矿细度为-0.074mm68%的原矿经一次强磁粗扫选,混合精矿进入二次磨矿,-0.074mm占95%的磨矿产品絮凝去泥后进入混合胺反浮选,浮选精矿再磁化焙烧一弱磁选,可得到铁品位60.45%、回收率52.48%的最终精矿。  相似文献   

7.
四川某锰品位为21.83%的硅钙质锰矿石锰品位低、嵌布粒度细、磨矿易泥化。为给该矿石的开发利用提供依据,对其进行了原矿预先脱泥—磨矿—强磁选—再磨—阳离子反浮选—阴离子正浮选工艺流程试验。结果表明:原矿预先脱泥后磨细至-0.075 mm占75%,磨矿产品与矿泥混合后经1粗1扫湿式强磁选,得到锰品位为25.23%、回收率为85.92%的强磁选精矿,强磁选精矿再磨至-0.075 mm占85.14%,以硫酸为p H调整剂、十二胺为捕收剂经1粗2扫反浮选,可以得到锰品位为28.86%、回收率为78.57%的反浮选精矿,反浮选精矿以Na2CO3为p H调整剂、六偏磷酸钠为抑制剂、GJBW为捕收剂经1粗2扫正浮选,获得的最终锰精矿锰品位为33.62%、回收率为72.76%。试验结果可以为该硅钙质锰矿石的利用提供技术参考。  相似文献   

8.
河北钢铁集团矿业有限公司司家营铁矿选矿厂采用以NaOH为pH调整剂、淀粉为抑制剂、石灰为活化剂、GK-68为捕收剂的阴离子反浮选工艺处理弱磁选和强磁选所得混合精矿,存在药剂制度复杂且矿浆需加温的弊端。为此,从武汉理工大学研制的阳离子捕收剂GE-609和中南大学研制的阳离子捕收剂HYS-2中筛选出GE-609对司家营铁矿选矿厂磁选混合精矿进行了阳离子反浮选试验,并模拟现场流程和药剂制度进行了阴离子反浮选对比试验。试验结果表明,在常温和不改变原有流程结构的情况下,GE-609仅与淀粉1种药剂配合,可获得铁品位为65.37%、铁回收率为84.10%的最终铁精矿,而模拟阴离子反浮选在40 ℃下所获最终铁精矿的铁品位为65.55%、铁回收率为79.44%。由此可见,采用GE-609进行阳离子反浮选不仅可达到实现常温浮选和简化药剂制度的目的,还可较大幅度地提高铁的回收率。  相似文献   

9.
吴红  王小玉  刘军  张永 《金属矿山》2021,50(9):79-84
山西某微细粒铁矿石选矿厂原采用阶段磨矿—弱磁选—强磁选—阴离子反浮选工艺流程,生产中存在强磁选尾矿铁品位偏高、浮选指标不理想等问题。因此,通过一段强磁选磁场强度优化、弱磁选—强磁选替代絮凝脱泥等方法优化工艺流程。结果表明:①针对铁品位30.60%的试样,在磨矿细度为-0.076 mm占85%的条件下,采用一段弱磁选(143 kA/m)、强磁选(1 114 kA/m)工艺流程,可使强磁选尾矿铁品位降至6.18%,此时铁回收率损失仅为4.82%。②以二段弱磁选—强磁选流程替代原絮凝脱泥工艺,在二段磨矿细度为-0.038 mm占85%的条件下,二段弱磁选、强磁选磁场强度分别为143 kA/m、637 kA/m,浮选给矿铁品位由39.90%大幅提高至48.36%,浮选给矿中-10 μm粒级含量由27.22%降低至22.19%,-20 μm粒级含量由48.79%降低至44.21%。③对二段弱磁选+强磁选混合精矿采用“1粗1精3扫”闭路浮选流程,在1次粗选浮选浓度为25%、温度为30 ℃的条件下,依次添加NaOH 1 200 g/t、淀粉1 000 g/t、CaO 500 g/t,RA-915粗选、精选用量分别为900 g/t、150 g/t,最终可获得铁品位66.13%、铁回收率88.44%的浮选铁精矿,此时浮选尾矿铁品位为15.83%。优化后的试验流程降低了强磁选尾矿铁品位,同时提高了浮选给矿的铁品位,降低了浮选提质降杂难度,对同类型的铁矿石开发利用具有借鉴意义。 关键词 微细粒|铁矿石|高梯度强磁选|阴离子反浮选  相似文献   

10.
刘文胜  韩跃新  姚强  高鹏  刘杰 《金属矿山》2022,51(2):139-145
为解决鞍千矿业有限责任公司现行阶段磨矿—粗细分级—重磁浮联合分选工艺中重选精矿品位低、波 动大,浮选尾矿品位高、选别工艺流程长等难题,以鞍千现场半自磨粗粒湿式强磁预选精矿为研究对象,开展搅拌磨 矿—弱磁—强磁—反浮选短流程工艺优化试验研究,以期实现鞍千铁矿石的高效开发与利用。 结果表明,鞍千现场 半自磨—粗粒湿式强磁预选精矿在搅拌磨磨矿细度-0. 038 mm 占 80%条件下,经磁场强度 79. 58 kA / m 弱磁选,弱磁 尾矿经背景磁感应强度 700 mT 强磁选,强磁精矿以淀粉为抑制剂、CaO 为调整剂、TD-Ⅱ为捕收剂经 1 粗 1 精 3 扫反 浮选,反浮选精矿与弱磁选精矿合并为综合精矿,综合精矿铁品位为 68. 04%、回收率为 91. 78%,综合尾矿铁品位 8. 62%。 搅拌磨矿—弱磁—强磁—反浮选短流程充分利用铁矿磁性差异进行分选,实现了鞍千铁矿石的分质分选和 脉石的梯级抛除,对于鞍山式赤铁矿石经济高效开发利用具有重要的指导意义。  相似文献   

11.
针对河北司家营铁矿废石堆存量大、铁品位低、嵌布粒度细、处理难度大的特点,提出采用预选-阶段磨矿-阶段磁选-阴离子反浮选工艺流程处理。结果表明:铁品位为18.79%的废石经永磁干式磁选机抛尾-中细粒高梯度湿式强磁选机抛尾,可以获得铁品位为29.25%、回收率为59.61%的预选精矿,预选精矿经两阶段磨矿-阶段磁选,可以获得铁品位为52.71%、回收率为48.50%的磁选混合精矿,磁选混合精矿以NaOH为pH调整剂、淀粉为抑制剂、CaO为活化剂、MF为反浮选捕收剂,经1粗1精2扫反浮选,获得了铁品位为65.97%、作业回收率为89.21%、对原矿回收率为43.27%的合格精矿,可以为该类废石的资源化利用提供参考。  相似文献   

12.
某铜铁矿选矿工艺试验研究   总被引:1,自引:0,他引:1  
主要论述某铜铁矿石选矿工艺流程试验,针对矿石性质,整个试验分为两个选矿回路:选铜回路采用浮选工艺流程,浮选药剂有石灰、A3和丁基黄药;选铁回路采用磁选、铁粗精矿再磨的工艺流程方案。最终铜精矿品位为20.23%、回收率91.54%,铁精矿品位61.54%、回收率78.35%,获得了较好的试验指标。  相似文献   

13.
为解决德兴铜矿铜钼分离工艺硫化钠用量大、产生的碱性废水中COD含量高、废水处理成本高等问题,结合铜钼混合精矿粒度细、铜钼矿物组成简单、单体解离度高的特点,开展了磁浮联合工艺选矿试验研究。通过条件试验确定了较优的磁选工艺参数,磁选扩大试验获得了磁选精矿产率39.16%、铜品位29.27%、钼损失率6.08%的指标;对磁选尾矿进行了浮选分离试验,获得了精矿钼品位46.54%、钼作业回收率93.97%的指标;综合计算表明,采用磁浮联合工艺处理含铜25.56%、含钼1.04%的铜钼混合精矿,可获得铜品位26.02%、铜回收率99.79%的铜精矿及钼品位46.54%、钼回收率88.30%的钼精矿,铜钼分离指标较优。此外,由于磁选作业提前分离出近40%的高铜低钼铜精矿,大幅降低了浮选处理量,使硫化钠等浮选药剂用量降低40%以上,显著降低了碱性废水的COD含量及后续水处理成本,具有显著的经济效益和环保效益。  相似文献   

14.
赖伟强 《金属矿山》2017,46(6):94-98
山西某低品位含金镜铁矿铁品位为26.41%、金品位为0.67 g/t。矿石中金主要以自然金形式存在,自然金占总金的88.15%;铁主要存在于赤(褐)铁矿中,赤(褐)铁矿中铁占总铁的68.28%。为回收矿石中有价元素金和铁,进行了优先浮选金,浮选尾矿弱磁选-高梯度强磁选-反浮选回收铁选矿试验。结果表明,在磨矿细度为-0.074 mm占83.78%条件下,以石灰为pH调整剂、水玻璃为分散剂、丁基黄药+丁胺黑药为捕收剂、2#油为起泡剂,经1粗2精2扫浮选,获得了金品位为29.31 g/t、回收率为87.93%的金精矿,选金尾矿经1粗1精1扫弱磁选,获得了铁品位为65.86%、回收率为13.34%的铁精矿1,弱磁选尾矿经1粗1扫高梯度强磁选,强磁选精矿以NaOH为调整剂、改性淀粉为抑制剂、油酸钠为捕收剂,经1粗2精1扫反浮选,获得的铁精矿2铁品位为61.79%、回收率为50.67%,铁精矿1与铁精矿2合并后混合铁精矿铁品位为62.59%、总铁回收率为64.01%。试验结果可以为该矿石有价元素综合回收提供技术依据。  相似文献   

15.
针对海南某铁矿山不断开采、矿石品质下降的问题,提出采用铁矿石分质分选的新思路,开展了弱磁选富集磁铁矿、反浮选回收赤铁矿的工艺流程试验。结果表明:原矿经过磨矿(-0.074mm占54.21%)—一段弱磁选(79.58k A/m)—弱磁精矿再磨(-0.045mm占63.82%)—二段弱磁选(79.58k A/m)获得铁品位62.42%、回收率19.28%的弱磁精矿,对一段弱磁尾矿经强磁选获得的强磁精矿与二段弱磁尾矿合并为混磁精矿,混磁精矿再磨至-0.045mm占85.52%,以淀粉为抑制剂、Ca Cl2为调整剂、Ts-2为捕收剂,经1粗1精3扫闭路反浮选,获得铁品位60.60%、回收率36.23%的浮选精矿。弱磁精矿和浮选精矿中铁矿物分别主要以磁铁矿和赤铁矿形式存在,主要脉石矿物皆为石英。  相似文献   

16.
齐大山选矿厂采用阴离子型捕收剂LKY反浮选提纯混合磁选铁精矿,获得的精矿铁品位为67.77%、回收率为78.86%,使用LKY矿浆需要加温不仅增加了选矿能耗和工艺的复杂性,而且会降低流程的稳定性。为解决这些问题,相关课题组以新研制的脱硅捕收剂DJW-II对现场混合磁选铁精矿试样进行了室温(21 ℃)浮选试验,并对闭路试验精矿和尾矿进行了XRD和SEM分析。结果表明:-0.037 mm粒级产率为68.21%,主要矿物为磁铁矿和石英,铁在微细粒级有明显富集的试样,在pH调整剂NaOH用量为500 g/t(pH=9.0),抑制剂羧甲基淀粉用量为150 g/t,捕收剂DJW-II用量为175 g/t情况下,采用1粗1精3扫流程处理试样,获得了铁品位为67.60%、铁回收率为86.05%的铁精矿,试验精矿指标较现场精矿指标明显优越。因此,齐大山铁矿选矿厂混合磁选铁精矿反浮选除杂以DJW-II为捕收剂,既有利于降低生产工艺的复杂性,又有利于降低生产能耗、改善生产指标、提高经济效益。XRD图谱分析证明了DJW-II在铁精矿反浮选脱硅中的高效性;SEM图片显示,试样中的微细颗粒主要是铁矿物颗粒。  相似文献   

17.
刘军  杨任新  王炬  陆虎 《金属矿山》2018,47(10):70-75
姑山赤铁矿石硬度大、嵌布粒度极微细,目前的选矿工艺指标低(块精矿铁品位48%、粉精矿铁品位57%)。为探索提高姑山极微细粒赤铁矿石选矿工艺指标的途径,在实验室进行了阶段磨矿-阶段强磁选-阴离子反浮选探索试验。结果表明:在一段磨矿细度为-0.074 mm占85%条件下,经一阶段强磁选(1粗1扫,粗选、扫选磁场强度分别为477 kA/m、637 kA/m),强磁选精矿再磨至-0.030 mm占87%,经二阶段强磁选(1粗1扫,粗选、扫选磁场强度分别为477 kA/m、716 kA/m)-1粗1精阴离子反浮选(以NaOH为pH调整剂、淀粉为抑制剂、石灰为活化剂、RA-915为捕收剂),获得的浮选精矿铁品位可达63.96%,说明采用阶段磨矿-阶段强磁选-阴离子反浮选工艺将姑山铁矿铁精矿品位提高至63%以上在技术上是可行的。试验结果可以为姑山极微细粒赤铁矿石合理选矿工艺流程的确定提供参考。  相似文献   

18.
某钨钼多金属矿原矿直接浮选药剂成本高达17.74元/t·原矿。根据原矿中具弱磁性的脉石矿物含量高达67%,开发研究了高梯度磁选抛废新工艺,对含WO_30.21%、Mo 0.12%的原矿,采用高梯度磁选工艺预先抛除产率为53.41%的磁性废石,然后对非磁性产品进行浮选获得Mo品位为7.47%、Mo回收率为88.97%的钼粗精矿和WO_3品位为3.97%、WO_3回收率为78.15%的钨粗精矿。与原矿直接浮选工艺相比,高梯度磁选抛废-浮选新工艺的给矿量仅为原矿的46.59%,药剂成本节省50%,尾矿废水处理量减少50%左右,获得的钼粗精矿、钨粗精矿指标与直接浮选相近。  相似文献   

19.
新型酰胺基羧酸捕收剂DWD-1用于铁矿反浮选试验研究   总被引:1,自引:0,他引:1  
为了解决选厂使用脂肪酸阴离子捕收剂时药剂用量大、浮选温度高等问题,东北大学浮选药剂课题组研发了一种新型改性脂肪酸类常温捕收剂DWD-1。在25℃温度下反浮选鞍千矿业公司现场混合磁选精矿,捕收剂DWD-1用量仅200 g/t,活化剂Ca Cl2用量仅为200 g/t,经1粗1精1扫的闭路浮选脱硅,可获得精矿铁品位68.19%、回收率90.03%、尾矿铁品位12.95%的良好指标。与现场捕收剂RA-715在温度40℃、用量为530 g/t、活化剂Ca Cl2用量600 g/t、1粗1精3扫的闭路浮选指标相比,捕收剂DWD-1精矿铁品位提高了0.18%,回收率提高了2.69%,尾矿品位降低了3.09%。因此捕收剂DWD-1用作鞍千混合磁选精矿反浮选脱硅捕收剂能较大程度减少药剂用量,简化浮选流程,并获得更好浮选指标。  相似文献   

20.
在前期实验室试验的基础上,在现场进行了东鞍山铁矿高碳酸铁矿石磁选混合精矿分步浮选的工业试验,获得了铁品位为64.80%、铁作业回收率为72.89%的浮选精矿,验证了分步浮选工艺在工业上应用的可行性。工业试验期间对粗细分选-重选-磁选-分步浮选全流程进行了流程考察,结果表明,采用分步浮选技术可使东鞍山铁矿过去无法处理的高碳酸铁矿石得到利用,所得综合铁精矿的铁品位为63.02%、铁回收率为63.77%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号