首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
一种基于模糊度的聚类有效性函数   总被引:3,自引:0,他引:3  
根据模糊集理论,结合模糊C-均值聚类算法的约束条件,提出聚类模糊集概念,定义聚类模糊度.通过深入分析聚类模糊集的模糊度和贴近度在聚类评价中的作用,设计出一种模糊聚类有效性函数,并给出应用该函数实现模糊C-均值聚类有效性判定的具体步骤.实验结果表明,本文提出的聚类有效性函数是合理的.  相似文献   

2.
提出用重叠度来刻画模糊类间的距离,在此基础上针对模糊划分总重叠度有随类数增加而单调递增的趋势,提出基于重叠度增量的聚类有效性函数。该算法由重叠度增量最大值来确定最佳聚类数,不但克服了传统有效性函数的单调问题,而且计算简单。基于模糊C-均值聚类算法(FCM),应用多组测试数据对其进行性能分析,并与当前广泛应用且具代表性的有效性函数进行深入比较。仿真结果表明,该函数的有效性和优越性。  相似文献   

3.
基于数据集的模糊划分,引入了类与类间的关联度.依据类间的关联度,定义了一个聚类有效性函数仿真数据和实际数据的实验结果表明该聚类有效性函数是有价值的.  相似文献   

4.
模糊聚类分析结果是否合理的问题属于模糊聚类有效性判定课题,其核心是模糊聚类有效性函数的构造。文中基于序关系定义了模糊划分模糊熵来描述模糊划分的模糊程度。考虑到现有的一类有效的模糊聚类有效性函数就是基于数据集的模糊划分的,因此文中也用模糊划分的模糊熵作为聚类有效性函数。实验表明,模糊划分的模糊熵作为模糊聚类的有效性函数是合理的、可行的。  相似文献   

5.
基于模糊划分测度的聚类有效性指标   总被引:1,自引:0,他引:1       下载免费PDF全文
聚类有效性指标用于评价聚类结果的有效性。根据聚类的基本特性,提出了一个新的用于发现最优模糊划分的聚类有效性指标,该有效性指标采用模糊划分测度和信息熵两个重要因子来评价模糊聚类的有效性。其中,模糊划分测度用于评价聚类的类内紧致性与类间分离性,而信息熵则反映了模糊聚类划分结果的不确定性程度。实验结果表明,该聚类有效性指标能对模糊聚类结果的有效性进行正确的评价,特别是对于空间数据的聚类有效性评价,同其他有效性指标相比,它不仅能得到最优的模糊划分,而且对权重系数也是不敏感的。  相似文献   

6.
一个新的模糊聚类有效性指标   总被引:2,自引:1,他引:2       下载免费PDF全文
孔攀  邓辉文  黄艳艳  江欢 《计算机工程》2009,35(12):143-144
提出一个新的模糊聚类有效性指标。该指标能确定由模糊C-均值算法(FCM)所得模糊划分的最优划分和最优聚类数,结合了模糊聚类的紧致性和分离性信息,用类内加权平方误差和计算紧致性,用类间相似度计算分离性。在3个人造数据集和3个真实数据集上进行对比实验,结果证明该指标的性能优于其他有效性指标。  相似文献   

7.
模糊熵描述了一个模糊集的模糊性程度本文将模糊熵应用于聚类有效性的判决,指出用于聚类有效性判决的划分系数是一个基于模糊熵的判决标准.通过几个数据对不同模糊熵公式的判决功能进行了比较实验.  相似文献   

8.
结合模糊聚类的类内紧致性和类间分离性信息,提出一种新的模糊聚类有效性指标。该指标能够确定由模糊C-均值算法(FCM)所得模糊划分的最优划分和最佳聚类数。在1个人造数据集和4个真实数据集上进行对比实验,结果表明该指标性能的优越性。  相似文献   

9.
模糊C-均值(FCM)算法是一种非监督的模式识别方法。由于该算法具有对数据集进行等划分的趋势,影响其聚类精度。利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种点密度加权模糊C-均值算法。该方法不仅在一定程度上克服了FCM算法的缺陷,而且具有良好的收敛性。当以聚类已知的少量数据点作为监督信息指导聚类,聚类效果进一步改善。并用聚类有效性函数对算法的聚类有效性进行了评价,从而为算法的聚类性能提供了理论依据。  相似文献   

10.
模糊聚类是模式识别、机器学习和图像处理等领域的重要研究内容。模糊C-均值聚类算法是最常用的模糊聚类实现算法,该算法需要预先给定聚类数才能对数据集进行聚类。提出了一种新的聚类有效性指标,对聚类结果进行有效性验证。该指标从划分熵、隶属度、几何结构角度,定义了紧凑度、分离度、重叠度三个重要特征测量。在此基础上,提出了一种最佳聚类数确定方法。将新聚类有效性指标和传统有效性指标在6个人工数据集和3个真实数据集进行实验验证。实验结果表明,所提出的指标和方法能够有效地对聚类结果进行评估,适合确定样本的最佳聚类数。  相似文献   

11.
一种基于模糊聚类的隶属函数定义方法   总被引:1,自引:0,他引:1  
隶属函数的确定是模糊集合理论及其应用的基本而关键的问题。本文提出了一种基于模糊聚类的、以训练样本数据为依据的、自动地确定模糊集合隶属函数的方法,为开发模糊系统节省了大量的时间和精力。  相似文献   

12.
介绍一种基于模糊聚类的模糊辨识方法。首先利用含有聚类准则函数的模糊聚类方法来确定模糊规则数和模型前提参数,然后利用最小二乘法来辨识模型的结论参数,最后采用梯度下降法来调整模型的参数。该方法应用于Box-Jenkins数据仿真实例,仿真结果表明该方法简单有效。  相似文献   

13.
针对现有的聚类结果中类内紧致性差异对有效性指标的影响和不能很好地评价任意形状聚类的问题,提出一种基于连通性的聚类有效性指标并进行了仿真研究。首先,将对整个聚类结果的评价建立在对单个类评价的基础上,以便处理类内紧致性差异大的问题。其次,利用连通距离对形状和大小的不敏感性,处理对任意形状聚类的评价问题。仿真实验结果表明,该方法可以对各类的类内紧致性差异较大的任意形状的聚类结果进行评价。该指标是一种有效的聚类评价指标。  相似文献   

14.
基于流数据的模糊聚类算法   总被引:1,自引:0,他引:1  
对流数据进行有效聚类是一个吸引研究者很大注意力的问题.传统的聚类挖掘算法只能适用于纯数值属性数据或纯分类属性数据,很难适用于混合属性的数据.针对混合属性数据的特点,在借鉴AcluStream算法的基础上,提出了一种模糊聚类算法.算法对流数据的相异度分类度量,定量属性使用欧氏距离和曼哈坦距离度量,定性属性可以采用hamming距离度量.模糊聚类算法的主要步骤有两步:第一步,运用最小距离聚类算法进行聚类,构成一个初始类.第二步,对基于最小距离聚类算法进行聚类所得到的初始簇,运用密度聚类方法进行聚合或分割,使得聚类集合稳定.实践证明:该算法是快速地有效的.  相似文献   

15.
学习器间的差异性是影响集成学习效果的一个关键因素。目前针对分类集成的研究较多,针对聚类集成的研究则相对较少。基于聚类问题的本质特点,提出一种新的聚类集成学习方法,利用聚类有效性指标度量不同聚类结果性能上的差异,根据有效性指标的评价值为聚类结果分配权值,通过加权投票的决策方法进行聚类集成并确定最佳聚类数。理论研究和实验结果证明了新的聚类集成学习方法的可行性和高效性。  相似文献   

16.
稳健算法为工程和科学应用所必需.本文揭示了由Setnes和Babuska提出的FRC算法[1]的不稳健性,并提出了一种稳健非线性分类器(MFRC).它将模糊聚类与模糊推理的优势相结合,并且对每一聚类中的模糊关系由属于这个聚类的所有局部关系加权平均得到,从而降低了少数规则的破坏影响.本文将MFRC算法与FRC算法在有编号错误和无编号错误的情况下分别与原型由LVQ、GLVQF算法产生的1-NMP算法比较,分类结果显示MFRC算法具有强稳健性和识别率高的特点.  相似文献   

17.
本文分析了分布式数据库系统中,数据分段、分布与备份等问题,提出了基于模糊聚类的数据分布模型,并给出了详细的论述。  相似文献   

18.
目前对模糊推理系统规则摄动度量都是基于蕴涵关系进行研究的,而蕴涵算子选取不当必然会导致规则摄动出现误差。多数模糊推理算法也是基于蕴涵关系,这些算法因涉及模糊关系矩阵运算而使算法的计算过程比较复杂,有时推理结果和实际相差甚远。采用一种度量模糊推理系统规则摄动的新方法分析模糊推理系统的摄动,该方法不再使用蕴涵算子,而是基于规则摄动前后模糊集合的贴近度来度量,与以往的方法有着本质的不同,推理结果更贴合实际情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号