首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioretention is a stormwater treatment practice that has gained popularity due to its aesthetics, potential to reduce flooding, and early documented improvements to stormwater quality. A bioretention cell in an urban setting was examined in Charlotte, N.C. from 2004 to 2006. Flow-weighted, composite water quality samples were collected for 23 events and analyzed for TKN, NH4-N, NO2-3-N, TP, TSS, BOD-5, Cu, Zn, Fe, and Pb. Grab samples were collected from 19 storms for fecal coliform and 14 events for Escherichia coli (E. coli). There were significant reductions (p<0.05) in the concentrations of TN, TKN, NH4-N, BOD-5, fecal coliform, E. Coli, TSS, Cu, Zn, and Pb. Iron concentrations significantly increased (p<0.05). NO2-3-N concentrations were essentially unchanged. Efficiency ratios for TN, TKN, NH4-N, TP, and TSS were 0.32, 0.44, 0.73, 0.31, and 0.60, respectively. Fecal coliform and E. coli efficiency ratios were 0.69 and 0.71, respectively. Efficiency ratios for Zn, Cu, and Pb were 0.77, 0.54, and 0.31, respectively. Concentrations of Fe increased by 330%. The peak outflow of the bioretention cell for 16 storms with less than 42?mm of rainfall was at least 96.5% less than the peak inflow, with a mean peak flow reduction being 99%. These results indicated that in an urban environment, bioretention systems can reduce concentrations of most target pollutants, including pathogenic bacteria indicator species. Additionally, bioretention can effectively reduce peak runoff from small to midsize storm events.  相似文献   

2.
Storm-water best management practices (BMPs) are typically assessed using the performance metric of pollutant concentration removal efficiencies. However, debate exists whether this is the most appropriate metric to use. In this study, a storm-water wetland constructed and monitored in the coastal plain of North Carolina is evaluated for water quality and hydrologic performance using four different metrics: concentration reduction, load reduction, comparison to nearby ambient water quality monitoring stations, and comparison to other wetlands studied in North Carolina. The River Bend storm-water wetland was constructed in spring 2007 and was monitored from June 2007 through May 2008. Twenty-four hydrologic and 11 water quality events were captured and evaluated. The wetland reduced peak flows and runoff volumes by 80 and 54%, respectively. Reductions were significant. Concentrations for the following pollutants increased: total kjeldahl nitrogen (TKN), NH4–N, total nitrogen (TN), and total suspended solids (TSS); inflow and outflow concentrations did not change for total phosphorus (TP), while only NO2–3–N and orthophosphorus (OP) concentrations were lower at the outlet. Using a load reduction metric, results were strikingly different, showing positive load reductions of 35, 41, 42, 36, 47, 61, and 49% for these respective pollutants: TKN, NO2–3–N, NH4–N, TN, TP, OP, and TSS. When comparing the effluent concentrations from the wetland to ambient water quality in the Trent River, all effluent nitrogen species concentration were either similar or lower. TP and TSS concentrations leaving the wetland were higher than ambient water quality data. Finally, by comparing pollutant concentrations among different North Carolina wetlands, it is apparent the River Bend wetland received relatively “clean” water and released water with pollutant concentrations comparable to all other studies examined. Major conclusions from this study include: (1) storm-water wetlands sited in sandier soils (such as those of the North Carolina coastal plain) should be considered a low impact development tool and (2) the selection of performance metric has a pronounced bearing on how a BMP’s performance is perceived. Sole reliance on a concentration reduction metric is discouraged.  相似文献   

3.
Riparian reeds in rivers may be able to remove contaminants such as phosphorus. In this study, a selected river section was surveyed to investigate the effects of riparian reeds on the suspended solids (SS) and total phosphorus (TP) in the water. Six observation periods over two years showed that in the reed zone (the upstream 8.1?km of the river), the SS deposition rates per unit of concentration were between 0.025 and 0.031 1/km, and the TP concentration was decreased from 0.28–0.62?to?0.165–0.31?mg/L with decreasing rate of 41–50%, while in the nonreed zone (the downstream 8.1?km), the SS deposition rates were only between 0.0073 and 0.0092 1/km and the TP concentration was reduced from 0.15–0.30?to?0.12–0.24?mg/L with decreasing rate of 20% or so. The presence of riparian reeds could result in a SS deposition rate four times higher than that in a reed-free area, and the TP removal rate for the nonreed zone was only 40–48.78% of that for the reed zone. Water SS content was significantly lower in the reed zone than the surrounding water area. For the reed zone, water TP concentration was positively correlated to water SS content, but this relation disappeared in the nonreed zone. In both reed and nonreed zones, water dissolved reactive phosphorus concentration showed a significant negative relation to water SS content. Furthermore, water SS content and TP concentration appeared to be linked to reed density, and high reed density reduced the water flow velocity, resulting in lower water SS content and TP concentration.  相似文献   

4.
In India, fertilizers and chemicals are applied to different crops, which in turn, cause nonpoint source pollution of surface water and groundwater of the region. In the present work, extensive water quality surveys were done to estimate the nutrient outflow from three small agricultural watershed of the Kali Basin, Uttar Pradesh, India. A total of 576 field data sets have been collected during March 1999–February 2000 from four sampling stations. During the monsoon period the nutrient outflow from these agricultural watersheds were found to be orders of magnitude higher than during the nonmonsoon period. The percentage of nutrients outflow from each watershed was estimated on a monthly basis by obtaining periodical cropping patterns and the amounts of fertilizer applied for each watershed. A maximum of 85% of total nitrate and 70% of total orthophosphate applied in the field was found to be lost during the month of July from the third agricultural watershed having maximum slope and minimum watershed area. Using the data sets generated during field surveys, commonly used modeling approaches based on mass balance differential loading and decay fraction were tested for their applicability to estimate nonpoint source (NPS) pollution in the River Kali. The NPS concentration and load values computed from these approaches were compared with the NPS values measured in the field and the performances of different equations have been evaluated using error estimations such as standard error, normal mean error, mean multiplicative error, and correlation statistics. Further, a refined model based on reaction kinetics and mass balance differential loading has been proposed for the River Kali that minimizes error estimates and improves correlation between observed and computed nonpoint source loads.  相似文献   

5.
蚯蚓生物滤池处理农村分散生活污水效果研究   总被引:1,自引:0,他引:1  
通过分析1-7月份蚯蚓生物滤池进出水水质情况,阐述蚯蚓生物滤池对农村分散生活污水处理效果.结果表明:蚯蚓生物滤池对BOD5、NH4+-N及CODcr有较好的去除效果,平均去除率分别为78.2%、77.8%与38.1%,且随着进水水质及温度的变化,其出水水质稳定,具有较强的抗冲击负荷能力;而对TN和TP的去除效果不明显,...  相似文献   

6.
A pilot-scale experiment was carried out to study the simultaneous removal of nitrogen and phosphorous from municipal wastewater by an innovative continuous-flow integrated biological reactor (CIBR) process. A three-phase separator was used in the CIBR process, which not only saved energy consumption of sludge returning, but also solved the sludge–gas separating problem. The optimal working condition was 2?h aeration, 1?h agitation, and 1?h settling, with an energy consumption of 0.23?kW?h/m3. The average removal of chemical oxygen demand (COD), ammonia nitrogen (NH4+–N), total nitrogen (TN), and total phosphorus (TP) under the optimal conditions were 72.87, 75.23, 61.25, and 68.25%, respectively. The distributing rules of dissolved oxygen, pH, mixed liquid suspended solid, COD, NH4+–N, NO3?–N, TN, and TP in each phase of CIBR was studied. It was indicated that the appropriate condition was created for the simultaneous removal of nitrogen and phosphorus in the integrated reactor. The study demonstrated the feasibility of using CIBR process for simultaneous removal of nitrogen and phosphorus at the average temperature 12.2°C.  相似文献   

7.
为探究海绵城市植物技术设施对重金属及营养盐净化能力,以江心洲南京生态科技岛河道系统为研究对象,对其上下游水体中重金属及营养盐含量进行分析,通过综合污染指数法对上下游重金属风险进行评估,采用冗余分析及Spearman相关系数探究水体环境因素对重金属含量的影响,利用河道区域四种植物技术设施(河岸缓冲带、植被过滤带、生态浮岛、台地式石笼护岸)探究不同植物组合对水体中污染物的净化能力。结果显示,江心洲河道上游重金属的枯水期、丰水期及平水期WQI值分别为1.85、1.74及2.90,分别对应为重金属轻度污染、轻度污染及中度污染。而河道下游重金属的枯水期、丰水期及平水期的WQI值分别为0.18、0.30及0.52,均未存在污染现象。河道上游水体中pH是影响重金属含量的最重要因素,pH与溶解氧(DO)、总氮(TN)、五日化学需氧量(COD5)及总磷(TP)呈正相关。河道下游水体的pH也是影响水中重金属含量最重要的环境因素,其与溶解氧(DO)呈显著正相关。水体中营养盐净化能力大小为河岸缓冲带>植被过滤带>生态浮岛>台地式石笼护岸。相比其它植物组合,乔灌木群落栽植对水体中营养盐净化最具有潜力。  相似文献   

8.
Hydrologic models play an important role in the assessment of nonpoint source (NPS) pollution, which is essential for the environmental management of water resources. The present study has been undertaken to evaluate the applicability of a physically based continuous time scale, hydrological, and water quality computer model—Hydrologic Simulation Program-Fortran (HSPF)—in simulating runoff and sediment associated NPS pollutant losses from a small mixed type (land under agriculture, shrubs and forest, rocks, grasses) watershed of the Damodar Valley Corporation, Hazaribagh, India. Water soluble NO3–N, NH4–N, and P were considered as pollutants and their concentrations in the runoff were measured at the outlet of the watershed, randomly for 15 dates during the monsoon season (June–October) of 2000 and 2001. The model calibration and validation results reveal that the seasonal trend of HSPF simulated runoff, sediment yield, and NPS pollutants compared reasonably with their measured counterparts. Although the concentrations of pollutants were generally overpredicted for NO3–N and underpredicted for NH4–N and water-soluble P in the month of June when fertilizers releasing NH4–N and P are applied in rice fields, the differences in the mean concentration were not significantly different at a 95% level of confidence. Variation in the simulated losses of water soluble N and P species between the years occurred largely due to differences in the amount and distribution of rainfall. These results indicate that the HSPF model can be used as a tool for simulating runoff and sediment associated NPS pollution losses from the study area.  相似文献   

9.
Recently, increasing nutrient (i.e., nitrogen and phosphorus) concentrations have been observed in the surface water of many countries and this nonpoint source (NPS) pollution has become an important factor in the deterioration of water quality in the upper reach of the Yangtze River Basin. In this paper, the NPS pollution loads in the upper reach of Yangtze River Basin in the year 2000 were estimated using export coefficient model and remote sensing techniques. The spatial distributions of the NPS loads within the watershed were then displayed using geographical information system. Results indicated that the total nitrogen load was 1.947×106?t and the total phosphorus load was 8.364×104?t. Important source areas for the nutrients were croplands in the Jinsha R. and Jialing R. watershed, as well as the Chongqing municipality.  相似文献   

10.
Storm-water experts agree that the currently used best management practice (BMP) percent removal methodology metric has many flaws, and some have suggested using a BMP effluent concentration metric. This case study examines establishing an effluent target concentration for BMPs that relates to the health of macroinvertebrates in the receiving water. In North Carolina, 193 ambient water quality monitoring stations were paired with benthic macroinvertebrate health ratings collected in very close proximity. Water quality for the sites ranged from excellent to poor and was divided into three distinct ecoregions: Mountain, Piedmont, and Coastal. Statistically significant relationships were found in one or more ecoregions for dissolved oxygen, fecal coliform, NH3, NO2?3?N, total Kjeldahl nitrogen, total nitrogen (TN), and total phosphorus (TP). BMPs can then be selected and designed to meet these target effluent concentrations. Based upon this research, a development, and therefore set of BMPs, in Piedmont North Carolina could be required to release TN and TP effluent concentrations of 0.99 mg/L and 0.11 mg/L, respectively. These concentrations are both associated with “good” benthos health. The new method was most effective in the Piedmont ecoregion, however with more data collection, the Mountain and Coastal ecoregions may also benefit.  相似文献   

11.
The water quality performance of best management practices (BMPs) has been frequently assessed by the removal efficiency metric. Recent findings show that the removal efficiency metric is flawed because it does not account for background water quality, eco-region differentiation, and background, or “irreducible,” concentrations. Additionally, the removal efficiency metric inherently assumes a definite association exists between influent and effluent pollutant concentrations. Such a relationship between influent and effluent concentrations has been minimally studied for bioretention, the most common storm-water control measure associated with low-impact development (LID). This study analyzes influent and effluent total nitrogen (TN) and total phosphorous (TP) concentrations from 11 bioretention cells in the mid-Atlantic United States. Pooled data showed only a slight association between influent and effluent TN. Essentially no relationship exists between influent and effluent TP concentration. Both findings indicate that the percent-removal metric is a faulty means of evaluating bioretention performance. Twelve general linear models (GLMs) were created where influent TN and TP were the predictors of respective effluent TN and TP concentrations. Only one GLM was considered to be “good,” defined as 67–90% of the variation in effluent concentrations being explained by respective influent concentrations (R2 = 0.72). In addition, there were two “fair” models, five “poor” models, and four “very poor” models. No “very good” models were found for TN or TP. Furthermore, as influent nutrient concentration in runoff increases, the removal efficiency increases for TN and TP. “Dirtier” influent TP concentrations were effectively reduced; conversely, “cleaner” TP influent concentrations increased, both tending toward a (possibly media-controlled) baseline effluent concentration (0.10 to 0.18??mg/l). TN effluent data also may have been tending toward a common concentration; however, the value was not as discernible.  相似文献   

12.
The purpose of this research was to evaluate peak runoff control as a water protection method to reduce sediment and nutrient loads. Increased eutrophication of surface waters and risk of floods demands cost effective methods to reduce pollutant input and risks of flooding. With the peak runoff control it is possible to cut the main peaks and store the runoff water temporarily in ditches. The method decreases the suspended solids (SS) and nutrient loads by reducing flow velocities, and improving the settling of sediment particles. The method was tested in two heavily drained adjacent peat harvesting areas suffering considerable erosion. The peak flows were cut by 27–87%, the SS load by 61–94%, the total nitrogen (Ntot) by 45–91%, and the total phosphorus (Ptot) load by 47–88%. The peak runoff control method operated most effectively during extreme events when most of the SS load is transported. A detailed particle analysis of runoff water showed that water detention reduced the median particle size of SS load as the largest particles settle. The results clearly indicate that the peak runoff control is an effective method to control the sediment loads and peak flows from peatland drainage.  相似文献   

13.
An assessment of the performance of four level spreader–vegetative filter strip (LS-VFS) systems designed to treat urban storm-water runoff was undertaken at two sites in the Piedmont of North Carolina. At each site, a 7.6-m grassed filter strip and a 15.2-m half-grassed, half-forested filter strip were examined. Monitored parameters included rainfall, inflow to, and outflow from each LS-VFS system. A total of 21 and 22 flow-proportional water quality samples were collected and analyzed for the Apex and Louisburg sites, respectively. All studied LS-VFS systems significantly reduced mean total suspended solids (TSS) concentrations (p<0.05), with the 7.6 and 15.2-m buffers reducing TSS by at least 51 and 67%, respectively. Both 15.2-m VFSs significantly reduced the concentrations of total Kjeldahl nitrogen (TKN), total nitrogen (TN), organic nitrogen (Org-N), and NH4-N (p<0.05), whereas results were mixed for the 7.6-m VFSs. Significant pollutant mass reduction was observed (p<0.05) for all nine pollutant forms analyzed in Louisburg, which was caused by infiltration in the VFSs. The effects of VFS length and/or vegetation type are very important for pollutant removal, as effluent pollutant concentrations were lower (with one exception) for the 15.2-m VFSs. The median effluent concentrations for TN and total phosphorus (TP) for the four LS-VFSs were nearly always better than fair water quality benchmarks for the Piedmont of North Carolina, but only met good water quality metrics in one-half of the studied storm events.  相似文献   

14.
The total maximum daily load (TMDL) concept provides the basis for regulating pollution load from riverine sources to impaired water bodies. However, load is comprised of two components: flow and concentration. These two components may have confounding, or even conflicting, effects on waterbody attributes of concern. This is particularly the case for dynamic, advective systems, such as estuaries. Resolving these components is critical for properly predicting the response of impaired systems to watershed management actions. The Neuse River Estuary in North Carolina is an example of such an impaired system. Nitrogen has been identified as the pollutant of concern, and the process of developing a TMDL for nitrogen is underway. We, therefore, analyze the extensive data that have been collected for the Neuse River and estuary to investigate spatiotemporal relationships between river flow, riverine total nitrogen (TN) inputs, water temperature, dissolved inorganic nitrogen concentration, algal density, and primary productivity. Results support the belief that phytoplankton in the estuary are under substantial riverine control. However, the riverine TN concentration alone has only a minor role in determining estuarine chlorophyll concentration. River flow has a stronger influence, likely through its effects on down-estuary nitrogen delivery, residence time, salinity, and turbidity. These results imply that using riverine nitrogen load as the metric to evaluate watershed nutrient management may not be appropriate. While nitrogen controls should reduce loads in the long term, in the short term, river flow is the dominant component of load and has the opposite effect of nitrogen on algae at the up-estuary locations.  相似文献   

15.
Nutrient Retention in Vegetated and Nonvegetated Bioretention Mesocosms   总被引:3,自引:0,他引:3  
Thirty well-established 240L bioretention mesocosms were used to investigate retention of dissolved nutrients by bioretention systems. Ten mesocosms were comprised of 80?cm sandy loam, ten of 80?cm loamy sand, and ten of pea gravel with 20?cm of loamy sand. Half were vegetated with shrubs/grasses, while the other half had no vegetation (barren). In the first part of our study, the loam and sand mesocosms were dosed with synthetic storm water comprising 0.8?mg?L?1 total phosphorus (TP) and 4.8?mg?L?1 total nitrogen (TN). TP retention in the vegetated loam was 91% compared to 73% in the barren, and TN retention was 81% compared to 41% in the barren loam. TP retention was 86–88% in the sand treatments, while TN retention in the vegetated sand was 64%, compared to 30% in the barren. In the second part of our study, all 30 mesocosms were loaded weekly with 45?cm of tertiary effluent with high nutrient loads (22.3?m?year?1 hydraulic load at a flow-weighted average of 4.5?mg?L?1 TP and 4.8?mg?L?1 TN, or 1,012?kg?ha?1?year?1 TP and 1,073?kg?ha?1?year?1 TN). After 50 weeks of loading, cumulative TP retention was 92% in the vegetated loam, 67% in the sand, and 44% in the vegetated gravel. However, TP retention by barren media was 56% in the loam, 39% in the sand, and 14% in the gravel. Cumulative TN retention was 76% in the vegetated loam, 51% in the sand, and 40% in the vegetated gravel. In contrast, maximum TN removal by barren media was 18% in the loam. The increase in TP retention by vegetated systems substantially exceeds phosphorus uptake rates for plants, suggesting that other processes are involved. The increase in TN retention by vegetated systems also exceeds nitrogen uptake rates for plants, suggesting that denitrification is involved.  相似文献   

16.
刘惠  吴为  张晓卫 《冶金动力》2011,(3):57-64,67
通过两段曝气生物滤池(TUBAF)处理城市生活污水的试验研究,考察了容积负荷、水力负荷、水温等对处理效能的影响。结果表明:污染物容积负荷的增加,TUBAF的污染物去除能力会逐渐降低。就COD、氨氮、SS去除效能而言,两段上向流BAF可以承受较大幅度的水力负荷变化;当进水水温上升,反应器运行性能相应提高;BAF C段、BAF N段的DO分别控制在2~3mg/L和3~5mg/L是适宜的。试验过程并未发现PH值对处理效果有显著影响。BAF C段采用半软性,BAF N段采用粒径较小的酶促好氧填料,这种组合填料方式能有效延长运行周期,达到良好的COD和氨氮及SS去除效果。  相似文献   

17.
A significant amount of pollutants in urban stormwater runoff is transported as sediment-bound contaminants. It is important to have a clear understanding of the amount of pollutants attached to the different sediment sizes so that treatment facilities can be designed to effectively target the removal of the most polluted sediment sizes. This paper presents results from a study carried out to determine nutrient loads associated with different particle size ranges for dry surface pollutants and stormwater samples collected from an urban road surface. The results indicate that although more that half of the surface pollutant is coarser than 300 μm (microns), less than 15% of the total phosphorus (TP) and total nitrogen (TN) are attached to particle sizes greater than 300 μm. The pollutant loads in the different particle size ranges from different stormwater samples show a larger variability for TN than for TP. The dissolved component for TN ranges between 20 and 50% compared to 20–30% for TP. Practically all the particulate TP and TN in stormwater samples are attached to sediments between 11 and 150 μm. This suggests that to effectively remove TP and TN, pollutant treatment facilities must be able to remove particulates down to 11 μm.  相似文献   

18.
Vegetated storage-infiltration best management practices (BMPs) have become an increasingly popular means of attenuating and treating runoff from developed land. However, the hydrologic and pollutant removal performances of these facilities can be highly variable. A mathematical model of an idealized BMP was developed in order to quantify the impact of variable hydrologic and pollutant concentration input on BMP performance by simulating the treatment performance of the model system during 1,250 non-steady-state storm events generated based on historic Maryland rainfall data. The model BMP was effective in attenuating volume (42% total volume reduction) and peak flow (median peak output to peak input flow ratio was 0.058). The simulated mean effluent pollutant event mean concentration was much less than the influent (0.284 compared with 1.51 mg/L) and the overall mass load reduction was 92%. However, the performance parameters demonstrated significant variability. Consequently, the results suggest a need to incorporate into BMP performance guidelines the impact of the variable influent hydrologic and pollutant concentration characteristics. Emphasis should be placed on discharge water quality and statistical distributions rather than on single-percent removal values.  相似文献   

19.
对低负荷运行状态下某生活垃圾渗滤液处理厂监测的数据进行分析,研究UASB、MBR、DTRO各工艺单元及工艺系统对渗滤液中CODcr、SS、NH3-N等污染物质的去除效果及去除率,分析UASB+ MBR+ DTRO工艺对渗滤液的处理效果.经过11个月的长时间运行监测,处理后出水水质能稳定达到《城市杂用水水质标准》(GB/...  相似文献   

20.
Water quality of highway stormwater runoff from an ultra-urban area was characterized by determining the event mean concentration (EMC) for several pollutants and by evaluating pollutant flushing. Thirty-two storm events were monitored between June 2002 and October 2003. Mean EMCs in mg/L were 0.035, 0.11, 0.22, 1.18, 420, 3.4, 0.14, 1.0, and 0.56 for Cd, Cu, Pb, Zn, total suspended solids (TSS), total Kjeldahl nitrogen (TKN), NO2–N, NO3–N, and TP. First flush as defined by flushing of 50% of the total pollutant mass load in the first 25% of the event runoff volume occurred in 33% of the storm events for NO2?, 27% for TP, 22% for NO3? and TKN, 21% for Cu, 17% for TSS, 14% for Zn, and 13% for Pb. Median values for the mass flushed in the first 25% of runoff volume were greater than the mass flushed in any 25% portion beyond the first for all pollutants. The mass in later 25% volume portions were greater than in the first 25% volume in at least 17% of the events for all pollutants, indicating that a significant amount of the pollutant load can be contained in later portions of the runoff volume. Nonetheless, management of the first 1.3?mm (1/2?in.) of runoff was able to capture 81–86% of the total pollutant mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号