首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
以土工合成粘土衬垫(Geosynthetic Clay Liner,GCL)在尾矿库防渗层中的应用为背景,研究不同浓度重金属离子(Cu和Zn)作用下,膨润土的自由膨胀量、液限及GCL渗透系数的变化规律,并分析它们之间的对应关系。试验结果显示,当重金属离子浓度在0.01mol/L到0.1mol/L之间递增时,膨润土的自由膨胀量和液限会随着重金属离子浓度的增大而大幅度减小,但当重金属离子浓度从0.1mol/L增加到0.5mol/L时,膨润土的自由膨胀量和液限则只有微小变化。在渗透试验中,当渗透溶液中重金属离子浓度小于0.01mol/L时,GCL的渗透系数能够保持稳定;但当重金属离子浓度大于0.02mol/L后,GCL的渗透系数会随着渗透溶液中重金属离子的浓度增加而不断升高。研究结果表明,当尾矿库渗滤液中重金属离子浓度大于0.02mol/L时,GCL的渗透系数与膨润土的自由膨胀量和液限之间具有良好的数学对应关系,可以利用自由膨胀量和液限对渗透系数进行预测。  相似文献   

2.
GCL膨润土衬垫有很好的吸水膨胀性能,作为防渗材料被广泛应用在环境工程和水利工程。在上覆荷载作用下,GCL膨润土衬垫的膨胀量会受到影响。采用膨胀试验和渗透试验研究上覆荷载与膨胀量之间的关系,以及膨胀量对渗透系数的影响。结果表明,随着上覆荷载的增加,GCL膨润土衬垫膨胀量明显减小,荷载超过1000 k Pa后几乎不会发生膨胀现象。GCL膨润土衬垫膨胀量大,防渗性能低,膨胀量达到12 mm时渗透系数增大1个数量级。根据拟合得到的膨胀量与上覆荷载、膨胀量与渗透系数的关系式,计算了不同堆载高度下的膨胀量和渗透系数,GCL膨润土衬垫上部铺设0.2 m的砂土,能大大提高安全性。  相似文献   

3.
竖向应力作用下GCL的膨胀特性和渗透性能   总被引:3,自引:0,他引:3       下载免费PDF全文
李志斌  徐超 《岩土工程学报》2007,29(12):1876-1880
近年来,土工织物膨润土垫(GCL)被越来越多地应用到各种防渗工程之中,它的防渗有效性也成为了设计人员和研究人员所关注的焦点。GCL的防渗有效性包括渗透性能、吸附能力和内部剪切强度三个方面。通过水化膨胀试验和渗透试验研究了GCL在竖向应力作用下的膨胀特性和渗透性能,并分析了正应力和加压水化顺序的影响。试验结果表明:(1)随着竖向应力的增大,GCL的膨胀量不断减小,而GCL的渗透系数则出现先减小后略有增大的规律;(2)水化加压顺序对GCL的膨胀量和渗透系数均有影响;(3)在实际工程应用中,GCL铺设完成后在堆载之前最好完全水化,这样能够大大提高GCL的防渗有效性。  相似文献   

4.
土工复合膨润土垫(GCL)具有良好的防渗隔气及抗张拉等性能,在填埋场中具有较好的应用前景。GCL/GM界面由于膨润土挤出而导致其剪切强度较小,将影响GCL在填埋场边坡中的使用。因此,采用改进的固结仪进行了膨润土挤出机理的研究,重点探讨了正应力、加载速率、加载与水化的顺序、土工织物类型以及渗滤液等因素对膨润土挤出的影响,并在实验结果的基础上提出了超孔隙水压力挤出机理:快速加载时,GCL内部产生了较大的超孔隙水压力,导致膨润土颗粒在该渗透力的作用下通过土工织物中的孔隙往GCL/GM界面的间隙迁移。  相似文献   

5.
在25℃,40℃,60℃和90℃的蒸馏水中对高庙子(GMZ)膨润土进行了膨胀性能试验。由于在试验条件下渗透膨胀占主导地位,GMZ膨润土的膨胀性能随温度的升高而增大,其中最大膨胀率随温度线性增加,而膨胀力随温度呈指数增加。压实GMZ膨润土的膨胀性能可用em=KpD-3表示。N2吸附试验结果表明温度对GMZ膨润土的表面分维D基本没有影响。在渗透膨胀条件下,采用扩散双层模型计算发现膨胀系数K与温度Tc之间存在线性关系,并且通过GMZ膨润土和Bikaner膨润土的膨胀试验进行了验证。将K–Tc线性关系与em–p分形关系相结合,提出了温度作用下GMZ膨润土膨胀性能的一种简便定量评价方法。  相似文献   

6.
王鸽 《建材地质》2012,(1):18-19
本文以湖北鄂州钙基膨润土为研究对象,对该地区膨润土进行品质分析,并对其制备高膨胀性钠基膨润土进行了试验研究。结果表明:鄂州膨润土在最佳钠化条件下,在改性成品中加入增效剂后,膨润土的膨胀性能明显提高,为鄂州生产高膨胀性膨润土提供了依据。  相似文献   

7.
采用特定pH值的多级浓度Pb~(2+)溶液,对膨润土进行了自由膨胀量测试,同时以Pb~(2+)溶液作为水化液,对膨润土防水毯(GCL)的渗透系数进行了测试,指出GCL铺设时应注意强酸性和高离子浓度工程环境对GCL抗渗性能的影响。  相似文献   

8.
膨润土防水毯作为一种优异的防渗材料,国内暂无其在渗滤液环境下的渗透性能报道。本文拟配置性能组分稳定的代表性合成渗滤液作为实际渗滤液的替代试验介质,研究合成渗沥液对膨润土原料膨胀性能和滤失性能的影响,测试在合成渗滤液环境中,不同压力和温度条件下膨润土防水毯的渗透系数,以此为垃圾填埋工程和其他固废填埋工程使用膨润土防水毯作为防渗衬垫提供指导。  相似文献   

9.
接缝对高压实膨润土工程屏障自封闭性能的影响   总被引:1,自引:0,他引:1  
 以高庙子膨润土为研究对象,采用自主研制的多功能膨胀–渗透仪,对不同初始干密度的试样进行不同接缝宽度条件下的膨胀力和渗透试验,并对水化后的膨润土进行水银孔隙率定试验,从微观结构层面分析接缝对膨润土渗透性的影响机制。结果表明:接缝的存在将导致膨润土的膨胀力减小、渗透性增大,从而降低膨润土在处置库中的自封闭性能;在水化过程中,接缝的存在会引起膨润土内部孔隙大小和数量的变化,宏观表现为膨润土渗透性增大。  相似文献   

10.
采用蒸馏水和0.01 mol/L铜离子溶液分别水化钠基膨润土防水毯(以下简称GCL)进行渗透试验,并用0.01 mol/L铜离子溶液代替蒸馏水测试GCL渗透系数和渗滤液中铜离子浓度;分析了不同水化处理对GCL吸附铜离子和防渗性能的影响。结果表明:不同水化方式预水化的GCL对铜离子都具有优异过滤效果,两种水化方法对铜离子过滤能力都达到99%以上;相比于0.01 mol/L铜离子溶液直接水化,蒸馏水预水化后GCL吸附性能较好,但防渗性能随着时间的增加而变差。  相似文献   

11.
The effects of the silt aggregation, compaction density, and water content of the subgrade on the hydration of five different geosynthetic clay liner (GCL) products is reported based on a series of laboratory column experiments conducted over a six-year period. GCLs meeting typical specifications in terms of minimum hydraulic conductivity and swell index are hydrated to equilibrium from the same subgrade soil with sufficient cations to cause cation exchange during hydration. It is then shown that the GCL bentonite granularity and GCL structure can have a significant (~four orders of magnitude) effect on hydraulic conductivity under the same test conditions (from 8 × 10−12 m/s for one GCL to 6 × 10−8 m/s for another GCL product). The effect of subgrade water content on the hydraulic performance of GCLs are not self-evident and quite dependent on the bentonite granularity, GCL structure, and permeant. Varying the subgrade water content from 5 to 16% and allowing the GCL to hydrate to equilibrium before permeation led to up to 5-fold difference in hydraulic conductivity when permeated with tap water and up to 60-fold difference when the same product is permeated with synthetic municipal solid waste leachate. When permeated with synthetic leachate, increasing stress from 70 kPa to 150 kPa led to a slight (average 37%; maximum 2.7-fold) decrease in hydraulic conductivity due to a decrease in bulk void ratio. It is shown that hydraulic conductivity is lower for GCLs with a scrim-reinforced geotextile, and/or with finer bentonite. It is shown that selecting a GCL based on the initial hydraulic conductivity and swell index in a manufacturers product sheet provides no assurance of good performance in field applications and it is recommended that designers pay more attention to selection of a GCL and preparation of the subgrade for important projects.  相似文献   

12.
《Soils and Foundations》2007,47(1):79-96
To investigate systematically the effects of electrolytic solutions on the barrier performance of geosynthetic clay liners (GCLs), a long-term hydraulic conductivity test for 3 years at longest was conducted on a nonprehydrated GCL permeated with inorganic chemical solutions. The hydraulic conductivity test for waste leachates was also conducted. The results of the test show that the hydraulic conductivity of GCLs significantly correlates with the swelling capacity of bentonite contained in GCLs. GCLs have excellent barrier performance of k<1.0×10-8 cm/s when the free swell is larger than 15 mL/2 g-solid regardless of the type and concentration of the permeant solution. In addition, when the results of the hydraulic conductivity test with chemical inorganic solutions were compared to those with waste leachates, the hydraulic conductivity of GCL permeated with chemical solution was almost the same within the electric conductivity of 0-25 S/m as that permeated with waste leachate having similar electric conductivity. The hydraulic conductivity of GCLs to be used in landfill bottom liners can be estimated by the hydraulic conductivity values obtained from the experiment using chemical solutions having the similar electric conductivity values, if the chemical solution had the electric conductivity within=25 S/m.  相似文献   

13.
When geosynthetic clay liners (GCLs) are applied as bottom liners at waste containment facilities, they are naturally prehydrated by absorbing moisture in the underlying base layers. In order to evaluate the effects of cations contained in waste leachates, this study investigated the effects of the water content distribution of the GCLs prehydrated with actual soils on their hydraulic conductivities against CaCl2 solutions. The “prehydration tests”, which were conducted prior to the hydraulic conductivity tests, showed that the water content distribution of the prehydrated GCLs depends on the properties of the GCLs and the base layers. In particular, drastic differences between GCLs with powdered bentonite and GCLs with granular bentonite were observed in the prehydration water content and its distribution. Prehydrated GCLs with powdered bentonite had a higher water content and a more homogenous distribution than those with granular bentonite. The hydraulic conductivity tests showed that most of the prehydrated GCLs exhibit a low hydraulic conductivity of k?1.0×10-8 cm/s against CaCl2 solutions with 0.1-0.5 M. However, GCLs with granular bentonite may be difficult to homogeneously prehydrate and exhibit an unstable hydraulic conductivity, which varies from k=2.9×10-9 cm/s to k=1.5×10-6 cm/s. The homogeneity of the water content distribution has been considered an important factor to obtain a required barrier performance under prehydration conditions, which are naturally generated in actual sites.  相似文献   

14.
The high ionic strength of the porewater in red mud (bauxite liquor from digestion) can suppress swelling of montmorillonite, resulting in geosynthetic clay liners (GCLs) that are too permeable to be effective as liners in red mud disposal facilities. Bentonite-polymer composite GCLs (BPC GCLs) have been developed as more resilient lining materials, and some BPC GCLs have been shown to have very low hydraulic conductivity to bauxite liquors that have extreme ionic strength and pH. In this study, a nationwide investigation was conducted in China to evaluate the characteristics of bauxite liquor in Chinese impoundments, and to evaluate the suitability of GCLs containing granular sodium bentonite or BPCs for containment. Hydraulic conductivity tests were conducted on six BPC GCLs with two characteristic Chinese bauxite liquors that are hyperalkaline (pH > 12) and had ionic strengths of 76.9 mM and 620.3 mM. The BPC GCLs had hydraulic conductivity ranging from 10?8-10?12 m/s, which is higher than the hydraulic conductivity of BPC GCLs to deionized water (10?12-10?13 m/s), but lower than the hydraulic conductivity of conventional GCLs with granular sodium bentonite GCLs to the same liquors (10?7-10?8 m/s). The hydraulic conductivity of the BPC GCLs depends on the chemical properties of the leachate, the polymer loading, and the type of polymer. Microstructural analysis by scanning electron microscopy (SEM) suggests that the hydraulic conductivity of BPC GCLs is controlled by pore-blocking by polymer hydrogel, which is affected by the bauxite liquor.  相似文献   

15.
A study was conducted to investigate (1) physicochemical factors that influence polymer elution from GCLs containing a blend of bentonite and linear (water-soluble) polymer (LPB GCLs) and (2) the mechanism that controls the chemical compatibility of LPB GCLs when polymer elutes. A series of hydraulic conductivity (k), free swell and viscosity tests were performed on a commercial LPB GCL using DI water, varying concentrations of NaCl and CaCl?. Comparable tests were also performed on a conventional bentonite (CB) GCL containing the same untreated bentonite and the same physical properties as the LPB GCL. The LPB GCL showed improved swelling and hydraulic performance compared to the CB GCL when permeated with salt solutions. Total organic carbon analysis of the effluents showed that polymer eluted from the LPB GCL regardless of the permeant solution. However, the rate at which polymer eluted increased as the concentration and valence of the dominant cation increased. The rate at which polymer eluted also increased with hydraulic gradient. The mass of polymer retained inside the GCL matrix did not correlate with the k of the LPB GCL. Free swell tests coupled with chemical analysis suggest that, the improved chemical compatibility of the LPB GCL was due to the ability of the polymer to scavenge cations from the solution which allows the bentonite to undergo adequate swelling during the initial hydration period. Analogous to water-prehydrated CB GCLs, the dispersed structure of the bentonite fabric and increased adsorbed water molecules attained during initial swelling controls the k of the LPB GCL when polymer elutes.  相似文献   

16.
The hydraulic and chemical compatibility of a geosynthetic clay liner (GCL), containing powdered Na-bentonite, was evaluated against artificial acid rock drainage (ARD) in terms of the swell index, hydraulic conductivity and heavy metal retention. Six artificial ARDs with an approximate pH of 3 and different metal concentrations (electrical conductivity, EC, ranging between 75 and 1000 mS/m; ionic strength ranging between 8 and 400 mM) were used in the experiments. The results of free swelling tests showed that high metal concentrations (EC higher than 70 mS/m) negatively impact the swell volume by lowering it. The hydraulic conductivity of the GCL permeated with distilled water was 1.2 × 10?11 m/s, falling in the range of 7.9 × 10?12 to 1.1 × 10?10 m/s when prehydrated with distilled water and permeated with ARDs. The ion exchange and metal precipitation appeared to be the main mechanisms controlling the metal attenuation on the bentonite. The ion exchange mechanism starts with the release of Na from the bentonite and the sorption of the bi- and tri-metals present in the ARDs onto the bentonite. After the depletion of Na, the ion exchange reaction proceeds with the desorption of Ca and Mg from the bentonite and the sorption of cations present in the ARDs onto the bentonite layers. The depletion of Na from the bentonite and the subsequent release of Ca and Mg correlate to the sudden drop in pH and a gradual increase or equilibration of the hydraulic conductivity. It is possible to say that, after this point, hydraulic and chemical equilibrium is reached. From the overall results, the tested GCL showed acceptably low hydraulic conductivity and the potential to attenuate heavy metals present in ARDs.  相似文献   

17.
水泥固化/稳定化是危险废弃物处理的经济、高效方法,然而,水泥固化体的淋滤液中含有大量Ca~(2+),其长期渗透有可能导致填埋场底部土工合成黏土衬垫(geosyntheticclayliner,GCL)的防渗性能下降,从而引发二次污染。使用柔性壁渗透仪,测定有效应力和水泥固化体淋滤液共同作用下GCL的渗透系数,探讨了淋滤液浓度以及不同有效应力对GCL渗透系数的影响。试验结果表明:当有效应力为24kPa时,水泥固化体淋滤液的持续渗透会使GCL的渗透系数增大179~721倍,淋滤液中Ca~(2+)浓度越高,GCL渗透系数增大的幅度越大。通过增加有效应力,可以降低固化体淋滤液对GCL防渗性能所造成的负面影响,当有效应力增大至438 kPa时,固化体淋滤液对GCL防渗性能所造成的负面影响全部被抵消。  相似文献   

18.
Flow in an idealized geosynthetic clay liner (GCL) containing bentonite comprised of equisized and equispaced square granules was simulated using a hydrodynamic model to quantitatively evaluate the premise that the hydraulic conductivity of GCLs diminishes as the bentonite granules hydrate and swell into adjacent intergranular pores, creating smaller and tortuous intergranular flow paths. Predictions with the model indicate that hydraulic conductivity decreases as granules swell and intergranular pores become smaller, and that greater granule swelling during hydration is required to achieve low hydraulic conductivity when the bentonite is comprised of larger granules, or the bentonite density is lower (lower bentonite mass per unit area). Predictions made with the model indicate that intergranular pores become extremely small (<1 μm) as the hydraulic conductivity approaches 10−11 m/s. These outcomes are consistent with experimental data showing that GCLs are more permeable when hydrated and permeated with solutions that suppress swelling of the bentonite granules, and that the hydraulic conductivity of GCLs with bentonite having smaller intergranular pores (e.g., GCLs with smaller bentonite granules, more broadly graded particles, or higher bentonite density) is less sensitive to solutions that suppress swelling.  相似文献   

19.
Hydraulic conductivity and swell index tests were conducted on a conventional geosynthetic clay liner (GCL) containing sodium-bentonite (Na-B) using 5, 50, 100, 500, and 1000 mM ammonium acetate (NH4OAc) solutions to investigate how NH4+ accumulation in leachates in bioreactor and recirculation landfills may affect GCLs. Control tests were conducted with deionized (DI) water. Swell index of the Na-B was 27.7 mL/2 g in 5 mM NH4+ solution and decreased to 5.0 mL/2 g in 1000 mM NH4+ solution, whereas the swell index of Na-B in DI water was 28.0 mL/2 g. Hydraulic conductivity of the Na-B GCL to 5, 50, and 100 mM NH4+ was low, ranging from 1.6–5.9 × 10?11 m/s, which is comparable to the hydraulic conductivity to DI water (2.1 × 10?11 m/s). Hydraulic conductivities of the Na-B GCL permeated with 500 and 1000 mM NH4+ solutions were much higher (e.g., 1.6–5.2 × 10?6 m/s) due to suppression of osmotic swelling. NH4+ replaced native Na+, K+, Ca2+, and Mg2+ in the exchange complex of the Na-B during permeation with all NH4+ solutions, with the NH4+ fraction in the exchange complex increasing from 0.24 to 0.83 as the NH4+ concentration increased from 5 to 1000 mM. A Na-B GCL specimen permeated with 1000 mM NH4+ solution to chemical equilibrium was subsequently permeated with DI water. Permeation with the NH4+ converted the Na-B to “NH4-bentonite” with more than 80% of the exchange complex occupied by NH4+. Hydraulic conductivity of this GCL specimen decreased from 5.9 × 10?6 m/s to 2.9 × 10?11 m/s during permeation with DI water, indicating that “NH4-bentonite” can swell and have low hydraulic conductivity, and that the impact of more concentrated NH4+ solutions on swelling and hydraulic conductivity is reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号