首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy transfer among the co-doped activators is an efficient route to achieve color-tunable emission in inorganic phosphors.Herein,photoluminescence tuning from blue to cyan has been achieved in the Lu2MgAl4 SiO12;Eu^2+,Ce^3+phosphors by varying the Ce^3+concentration with a fixed Eu^2+content.With the further introduction of a Mn^2+-Si^4+couple into the host lattice,the emission color can be tuned to red through the energy transfer of Eu^2+and Mn^2+.The luminescence properties and the energy transfer mechanism were studied in detail.The energy transfer from Eu^2+to Ce^3+is certified as a dipolequadrupole interaction with the energy transfer efficiency of 41.4%and Eu^2+to Mn^2+belongs to a dipole-dipole interaction with the energy transfer efficiency of 94.3%.The results imply that this singlephased Lu2MgAl4 SiO12:Eu^2+,Ce^3+,Mn^2+phosphor has a potential prospect for application in near-UV chip pumped white light emitting diodes.  相似文献   

2.
Tri-doped Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors were prepared by a high-temperature solid state method.Under UV light excitation,Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+)samples exhibit a broad band ranging from 320 to 500 nm.At 77 K,the emission spectra of Ca_9 LiY_(2/3)(PO_4)7:Ce~(3+)samples present two obvious emission peaks,indicating that Ce~(3+)ions occupy two different kinds of lattice sites(Ca(1/2) and Ca(3)),As a good sensitizer for Tb~(3+),Ce~(3+)ions in Ca_9 LiY_(2/3)(PO_4)_7 lattice can effectively transfer part of energy to Tb~(3+),and the energy trans fer mechanism is determined to be dipole-dipole interaction.Consequently,the emitting color for Ce~(3+) and Tb~(3+) co-doped Ca_9 LiY_(2/3)(PO_4)_7 samples can be tuned from bluish violet to green.In order to further enlarge the emission gamut,Mn~(2+)ions as red emission components were added,forming tri-doped single-phase Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors.The Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors exhibit tunable emission properties through controlling the relative doping concentration of Ce~(3+),Tb~(3+)and Mn~(2+).Especially,Ca_9 LiY_(2/3)(PO_4)_7:0.09 Ce~(3+),0.12 Tb~(3+),0.30 Mn~(2+)can emit warm white light.The sample shows good thermal stability.At 150℃,the emission intensity for Ce~(3+)(360 nm),Tb~(3+)(545 nm) and Mn~(2+)(655 nm) decreases to 63%,69%,and 72% of its initial intensity,respectively.Moreover,the sample obtains good stability after 10 cycles between room temperature and150℃.  相似文献   

3.
Broadband near-infrared phosphors are highly desirable for food testing.Targeted Ca2LuHf2Al3O12:Cr3+(CLHA:Cr3+) and Ca2LuHf2Al3O12:Ce3+,Cr3+(CLHA:Ce3+,Cr^(3+)) phosphors were synthesized by the conventional high-temperature solid state reaction.The CLHA:Cr3+phosphor,with a good thermal stability,shows a red shift owing to radiation reabsorption and non-radiative transition with increasing Cr3+content.For co-doped sample,the emission intensity of Cr3+can be enhanced by three times due to the energy transfer from Ce3+to Cr3+,which can be evidenced by a significant overlap between the PLE of Cr3+single-doped phosphor and the PL of Ce3+single-doped phosphor.In addition,the mechanism of energy transfer is identified as a quadrupole-quadrupole interaction according to decay Lifetime and Dexter’s energy transfer formula.The broadband NIR emission peaked at 775 nm of CLHA:Cr3+,Ce3+phosphor shows a bright prospect in nondestructive quality-control analysis systems for food.  相似文献   

4.
Single-phase Y2BaAl4SiO12:Tb3+,Eu3+phosphors with adjustable luminescence were successfully prepared by high-temperature solid-state reaction method.The structural,luminescent properties and ene rgy transfer(ET) process of Y2BaAl4SiO12:Tb^(3+),Eu3+phosphors were syste matically analyzed with the help of X-ray diffraction(XRD),scanning electron microscopy(SEM),excitation spectra,emission spectra and photoluminescence decay curves.Tunable luminescence ranging from green through yellow and definitively to red can be achieved by elevating amounts of Eu3+ions in Tb3+,Eu3+co-doped samples.Besides,the ET mechanism and efficiency were also analyzed and the maximum ET efficiency is 67%.All the results show that Y2BaAl4SiO12:Tb3+,Eu3+phosphors can be used in solid-state lighting.  相似文献   

5.
BiOCl crystal shows potential as efficient optical host due to its special layered structure. Here,the luminescence properties of the Er~(3+)/Sm~(3+) co-doped BiOCl phosphors as single-phase phosphors were reported. Upon near ultraviolet excitation(NUV, 380 nm corresponding the ~4 I_(15/2)→ ~4 G_(11/2) transition of Er~(3+) ions), the phosphors exhibit the efficient characteristic emissions of Er~(3+) and Sm~(3+) ions simultaneously. The energy transfer(ET) from Er~(3+) to Sm~(3+) ions in the layered crystals has been validated by the variation of emission intensities and decay lifetimes respectively, which is ascribed to be a dipoledipole interaction. By virtue of the ET behavior and increasing Sm~(3+) ion concentration, the enhancing emission intensity of Sm~(3+) and the tunability of emission color from yellowish-green(0.318, 0.420) to white(0.343, 0.347) are realized. The results of our work indicate that the Er~(3+)/Sm~(3+) co-doped BiOCI phosphor has a promising application serving as single component white emitting phosphors for NUV excited WLEDs.  相似文献   

6.
In order to effectively improve the afterglow properties of CaAl_2 O_4:Eu~(2+),Nd~(3+) phosphors,a series of Ca_(0.982-x)Al_2 O_4:0.012 Eu~(2+),0.006 Nd~(3+),xGd~(3+)(x=0,0.012,0.024,0.036,0.048,0.060 mol) phosphors were prepared by a high-temperature solid-phase approach.Crystalline composition and microstructure were characterized by XRD,TEM,HRTEM,and XPS,luminescence properties were systematically analyzed by fluorescence spectra,afterglow decay curves and TL glow curve.Results show that all of Ca_(0.982-x)Al_2 O_4:0.012 Eu~(2+),0.006 Nd~(3+),xGd~(3+)phosphors belong to monoclinic CaAl_2 O_4,without other cystalline phase.The blue emission at 442 nm is observed,which is assigned to the 4 f~65 d→4 f~7 transition of Eu~(2+) ions.Doping with appropriate amount of Gd~(3+) ions(x=0.036 mol) significantly improves the afterglow properties of phosphors,but the excessive doping of Gd~(3+) induces the fluorescent quenching.The doping of moderate Gd3+changes the traps states,the trap depth varies from 0.598 to 0.644 eV and the trap concentration is also greatly improved,thus significantly improving afterglow performance.  相似文献   

7.
A series of novel SrMg_2(PO_4)_2:Ce~(3+),Tb~(3+)(SMP:Ce~(3+),Tb~(3+)) phosphors with tunable emission spectra were produced via high temperature solid phase method.XRD,fluorescence spectrum and fluorescence lifetime for SMP:Ce~(3+),Tb~(3+)were studied in detail.Under the excitation at 308 nm,SMP:Ce~(3+),Tb~(3+) samples can emit high efficiency tunable blue-green light by controlling the proportion of dopant concentration.Through the spectral overlap and the regular change of fluorescence lifetime,it is proved that there is a significant energy transfer between Ce~(3+) and Tb~(3+) in SMP matrix and the energy transfer mechanism is determined to be an electric dipole-dipole interaction with energy transmission efficiency of 55%.In additional,Commission International de L'Eclairage(CIE) color coordinates and thermal stability were studied.All above findings suggest that SMP:Ce~(3+),Tb~(3+)can be regarded as the potential bluish green phosphor for LED applications.  相似文献   

8.
A series of non-rare earth Mn4+-activated strontium aluminate phosphors Sr4Al14O25:Mn4+co-doped with Sc3+ions were successfully synthesized by a high-temperature solid-state reaction method.XRD result reveals that there is no introduction of additional phase but expansion of lattice with incorporation of Sc34 ions.Excitation and emission spectrum measurement shows that the synthesized phosphors can be efficiently excited by near-ultraviolet and blue light,and a deep red emission centered at 652 nm with a narrow full width at half maximum(FWHM)can be obtained,which is attributed to the transition2E→4A2of Mn4+ions.In addition,the crystal field strength parameter(Dq)and Racah parameters(B,C)and energies of states were calculated based on experimental data.Moreover,the luminous intensity of Sr4Al14-xSCxO25:Mn4+is enhanced and increased by 60%compared with Mn4+single incorporated sample at x=0.06.A phenomenon of redshift is observed in the excitation spectrum and discussed systematically.Finally,the mechanism of the positive effects with Sc3+ions incorporated into lattice is discussed in detail.All the results suggest that the Sr4Al13.94Sc0.06O25:Mn4+phosphor will become one of the great candidates for backlight of LCD.  相似文献   

9.
In this paper,the fracture surfaces of a light-conversion film were observed using a scanning electron microscope(SEM),and then,the fluorescence spectra and mechanical properties of the film were tested.The SEM results show that the average diameter of the light conversion agent is 500 nm.The results of the mechanical properties tests show that the tensile strengths of light-conversion film increase from9.86 to 12.16 MPa and that the strain at breakage increases from 2.37%to 2.75%.In addition,the application effects of the light-co nversion film were studied.The results indicate that plant height,length of the maximum leaf,width of the maximum leaf and breadth of the plants increase by 24.43%,15.30%,15.60%and 19.07%,respectively.The quality of Chinese flowering cabbages treated with the lightconversion film is superior,including a 9.09%increase in the soluble protein content,a 21.27%increase in the polyphenol content,and a 19.15%increase in the soluble sugar content.Based on these results,light-conversion films can be applied in agricultural production.  相似文献   

10.
Long lasting blue-green-emitting Sr4Al14O25:Eu2+ phosphors were synthesized by solid-state reactions.The phosphors were investigated by X-ray diffraction(XRD) and fluorescence spectrophotometer.A pure phase of Sr4Al14O25:Eu2+ phosphor was obtained at 1250 °C.There are two different types of Eu emission centers in Sr4Al14O25:Eu2+ phosphor.The effects of the Eu2+ concentration and the reducing temperature on the distribution of Eu2+ among different sites were investigated.The energy transfer mechanism between two different emission centers was elucidated via the investigation of thermal damage influence on the phosphorescence spectra,that is,the energy emitted from an Eu1 emission center could be reabsorbed by an Eu2 emission center.  相似文献   

11.
Eu2+/Sm3+co-doped dual-emitting Sr4La(PO4)3O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and temperature-dependent luminescence properties of Eu2+/Sm3+co-doped Sr4La(PO4)3O phosphors were researched and analyzed in detail.The blue emission of Eu2+and the red emission of Sm3+can work together as FIR signals.Based on the different response characteristics of these two ion emissions to temperature,Sr4La(PO4)3O:Eu2+/Sm^(3+)phosphor achieves the relative sensitivity of0.48384%/K and a wide range of temperature measurements from room temperature to 573 K.The results reveal that the Sr4La(PO4)3O:Eu2+/Sm3+phosphor has application prospect in the field of high temperature optical thermometry.The energy transfer mechanism is proved to be the dipole-dipole interaction between Eu2+and Sm3+ions.  相似文献   

12.
Ca-doped Ba Mg Al10O17:Eu2+,Mn2+(BAM) blue phosphors were synthesized by flux assisted solid-state reaction method using Ca F2 and Ba F2 as co-flux.Good dispersity and particle size homogenization of hexagonal pure phase BAM were obtained by sintering at 1400 ℃.The effects of the Ca2+ ions content on the structure, morphology and photoluminescence properties of the phosphors were studied.The results indicated that the incorporation of Ca could decrease the lattice constant, improve the homogeneity and dispersity and enhance the photoluminescence(PL) intensity of the phosphor effectively.The optimum Ba0.86Ca0.04Mg0.97Al10O17:0.1Eu2+,0.03Mn2+ PL intensity was enhanced for about 30% and relative brightness was improved about 4%.Furthermore, the synthesized BAM and commercial BAM phosphors were annealed for 30 min at 600 oC in air.The Ca-doped phosphors had stronger emission intensity, higher brightness and better chromaticity stability than that of the commercial phosphor.These results indicated that Ca-doped blue phosphors had good potential applications in the commercial tricolor fluorescent lamps as well as in other display and lamps.  相似文献   

13.
Recently,borate compounds have received much attention in the field of rare earth doped phosphors due to their excellent luminescent performance.In this work,to explore the potential in LED and FED applications,the CsBaB_3 O_6:Eu~(3+) phosphor was investigated in detail by using Rietveld refinement,DFT calculations,photoluminescent and cathodoluminescent spectra.As a result,CsBaB_3 O_6 has a planar stacked three-dimensional layered structure.Under the excitation of 395 nm n-UV light and electron beam,CsBaB_3 O_6:Eu~(3+) phosphor exhibits a typical red emission of Eu~(3+).A good thermal stability and good resistance to saturation and degradation were observed in the CsBaB_3 O_6:Eu~(3+) phosphor.The related photoluminescent and cathodoluminescent mechanisms were studied.The results indicate that CsBaB_3 O_6:Eu~(3+) phosphor has potential in multifunctional applications.  相似文献   

14.
Tuning of phosphor luminescence properties,including the emission energy/intensity and thermal stability,is an important way to develop superior luminescent materials for diverse applications.In this work,we discuss the effect of band gap engineering and energy transfer on the luminescence properties of Ce^3+or Pr^3+doped(Y,Gd)AGG systems,and analyze the underlying reasons for their different phenomena.By using VUV-UV excitation spectra and constructing VRBE schemes,the changes of host band structure,5 d excited level energies and emission thermal stability of Ce^3+and Pr^3+with the incorporation of Gd^3+ions were studied.In addition,the energy transfer dynamics was also investigated in terms of the luminescence decay curves.This work demonstrates a way to tune phosphor luminescence properties by combining band gap engineering and energy transfer tailoring and provides an inspiring discussion on the different results of Ce^3+doping on the Ce^3+and Pr^3+emissions.  相似文献   

15.
A series of Eu2+/Dy3+ single doped and co-doped Na3Sc2(PO4)3 phosphors were synthesized by the high-temperature solid-state method, and their phase, morphology, and luminescence properties were characterized. Under the excitation of 370 nm, the Na3Sc2(PO4)3:Eu2+,Dy3+ phosphor can emit white light whose spectrum is composed of a broad emission band centered at 460 nm and the other three peaks at 483, 577, and 672 nm, respectively. There is energy transfer from Eu2+ to Dy3+ ion in Na3Sc2(PO4)3:Eu2+,Dy3+ phosphor due to the good overlap between the emission spectrum of Na3Sc2(PO4)3:Eu2+ and the excitation spectrum of Na3Sc2(PO4)3:Dy3+, which is further confirmed by the fluorescence lifetime decrease of Eu2+ ion with the increase of Dy3+ concentration. The process of energy transfer is via dipole–quadruple interaction which is confirmed by applying Dexter's theory. By increasing the Dy3+ concentration, the color coordinates of the Na3Sc2(PO4)3:0.01Eu2+,xDy3+ phosphors can be adjusted from blue to white, and then to yellow. The optimized concentration of Dy3+ ions is 4.0 mol%, beyond which the concentration quenching will take place. The Na3Sc2(PO4)3:Eu2+,Dy3+ phosphor shows fairly good resistance to thermal quenching behavior, of which the emission intensity at 423 K can maintain 90.3% of the initial value (298 K). These results suggest that the Na3Sc2(PO4)3:0.01Eu2+,xDy3+ phosphors have potential applications as the color-tunable or a single-phase white emitting phosphor in white LEDs.  相似文献   

16.
A series of Ca_(10)Na(PO_4)_7:Ce~(3+)/Tb~(3+)/Mn~(2+)(CNPO:Ce~(3+)/Tb~(3+)/Mn~(2+)) phosphors with high brightness were synthesized by high-temperature solid-state method. X-ray diffraction(XRD), scanning electron microscopy(SEM), diffuse reflectance spectra(DRS), photo luminescence(PL) spectra, luminescence decay curves and thermally stability were performed to characterize the as-prepared samples. For Ce~(3+)-doped samples, an intense and broad band emission is present under 265 nm excitation. When Ce~(3+) and Tb~(3+)are codoped, energy transfer(ET) process from Ce3+ to Tb3+ is demonstrated with electric dipole-dipole interaction. The internal and external quantum efficiencies(QEs) of CNPO:0.15 Ce~(3+), 0.04 Tb~(3+), 0.005 Mn~(2+)are measured to 76.79% and 54.11% under 265 nm excitation and temperature-dependent PL intensity can remain 51.78% at 150 ℃ of its initial intensity at 25 ℃. It is indicated that single-phased white lightemitting CNPO:Ce~(3+)/Tb~(3+)/Mn~(2+) phosphor can serve as a promising phosphor for illumination devices.  相似文献   

17.
Blue-green luminescent BaAl2O4:Eu2+,Dy3+ phosphor powders were synthesized via combustion synthesis method assisted by microwave irradiation in air. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometer. The XRD results revealed that when the concentration of urea was over 3 times higher than theoretical quantities, a BaAl2O4 single hexagonal phase was obtained. The SEM results revealed that the surface of the BaAl2O4:Eu2+,Dy3+ pow...  相似文献   

18.
A single-phase full-color emitting phosphor Sr2Ca2La(PO4)3O:Eu2+,Tb3+,Mn2+ was synthesized by the high temperature solid-state method. The phase formation, luminescence properties, thermal stability, and energy transfer from Eu2+ to Tb3+ and Eu2+ to Mn2+ in Sr2Ca2La(PO4)3O were investigated in details. Tunable emission color from blue to blueish green or orange can be observed under 365 nm near-ultraviolet excitation based on the energy transfer from Eu2+ to Tb3+ or Mn2+ ions by varying the ratio of Eu2+/Tb3+ or Eu2+/Mn2+ ions. White light was obtained with chromaticity coordinates of (0.3558, 0.3500) in the Sr2Ca2La(PO4)3O:0.04Eu2+,0.08Tb3+,0.40Mn2+ phosphor, suggesting their potential applications in white light emitting diodes.  相似文献   

19.
Phosphors with controlled emission spectra are of great interest due to their application for white light emitting diodes.Herein, a new class of Sr3Y2(SiO3)6:Ce3+,Tb3+ phosphors were synthesized by a facile sol-gel combustion method. The phase structure,morphology, and luminescence properties of the phosphors were characterized by using powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and photoluminescence excitation and emission spectra,respectively. The results on luminescence properties indicated that co-doped Ce3+ ions served as UV-light sensitizers with excitation energy partially transferred to Tb3+ ions, leading to green emission from Tb3+. Particularly, the corresponding emitting colors of the phosphors could be well-tuned from deep blue(0.16, 0.05) to green region(0.25, 0.45) by adjusting the molar ratio of Ce3+/Tb3+.  相似文献   

20.
In crystals BaFX:Eu~(2+)(X=Cl,Br).there exists configuration interaction between 4f~65d and 4f~65s ex-cited state of Eu~(2+)ion.and it results in the change of relative intensities of d-f and f-f transition.The transition~S_-_2→4f~65d-6s is observed.The variation of F/X atomic ratio between 110/90 and 90/110 does not obvi-ously influence the luminescence of BaFX:Eu~(2-).There is energy transfer between Eu~(2+)(f-f)and Eu~(3+)whichcoexists in the matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号