首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polycrystalline samples La_(0.9-x)EuxSr_(0.1)MnO_3(x = 0.000, 0.075) were prepared by the standard solid-state reaction method. The results show that the samples preform a characteristic of clusters spin-glass state at low temperature. The samples show a characteristic of ferromagnetism(FM) characteristic in the temperature range of 15-125 K and 15-150 K respectively; the samples show preformed clusters in the temperature range of 125-343 K and 150-325 K, respectively, the samples show paramagnetism(PM)characteristic above 343 and 325 K, respectively. The second-order transitions are found at 118 and 135 K for undoped and doped sample, respectively. When the applied magnetic field is 7 T, the maximum magnetic entropy change |△S_M| value of the samples is near the Curie temperature(Tc), and the value of|△S_M| reaches 2.76 and 3.03 J/(K kg), respectively. In addition, the relative cooling power(RCP) is found to be 425.28 and 443.53 J/kg. The numerical fitting data fit well with experimental data. These results indicate that both the samples have the potential to realize magnetic refrigeration in the high temperature region(T 77 K).  相似文献   

2.
Magnetic Entropy Change of (Gd_(1-x)RE_x)_5Si_4(RE=Dy, Ho) Alloys  相似文献   

3.
Tb_(1-x)Tm_xFeO_3(x = 0.00,0.15,0.25) polycrystalline series were synthesized using a solid-state reaction.Our results show that all three prepared samples are in a distorted orthogonal structure and their space group is pbnm.When the Tm~(3+)doping amount increases,the characteristics of the spin-flip of the sample decreases following an initial increase at the beginning;the antiferromagnetic property almost reaches zero;the magnetization decreases at the beginning but increases later on.The maximum magnetic entropy change and magnetic refrigeration effect RCP are reduced at varying degrees.Under a 7 T magnetic field,the maximum magnetic entropy change,△S_(max),for the three samples of Tb_(1-x)Tm_xFeO_3 with x=0.00,0.15,0.25 is 13.78,-9.28,and 10.69 J/(K·kg),respectively;the magnetic refrigeration capacity(RCP) is 316.85,175.2,and 297.60 J/kg,respectively.In summary,doping with the element Tm reduces △S_(max) and RCP of the sample.Since the maximum magnetic entropy change and the cooling capacity for the three samples are relatively large,they can be used as an alternative for magnetic refrigerants.  相似文献   

4.
The investigation on Curie temperature and magnetocaloric effect of the FeCrMoCBYNi bulk metallic glass(BMG) with different crystallized phases was carried out by XRD,TEM and PPMS. The experimental results show that the Curie temperature(T_c) of Fe_(45)Cr_(15)Mo_(14)C_(15)B_6 Y_2 Ni_3 BMG with different annealing condition reaches a highest value of 95 K. The value of magnetic entropy change △S_M(T) of Sample 3 reaches a maxima of 0.48 J/(kg·K) at Tc temperature, which result from the interaction among the precipitated phases of(Fe,Cr)_(23)(C,B)_6, Fe_3 Mo_3 C and residual amorphous phase. Based on the experiment results, it can be obtained that the Curie temperature, magnetocaloric effect can reach their optimal value at low temperature, when the content of amorphous phase and precipitated phases type run up to certain value. The magnetic properties of Sample 1 with full amorphous phase and Sample 4 with full crystalline phase will both decrease.  相似文献   

5.
Magnetic Transition and Magnetic Entropy Change of Gd_5Si_(1.75)Ge_(1.75)Sn_(0.5)  相似文献   

6.
The magnetocaloric effect of LaFe11.7Si1.3 compound was investigated under an external magnetic field up to 9 T.The magnetization changed drastically at the Curie temperature TC under different fields and TC increased with the applied fields.The magnetic entropy change |?SM| vs temperature peak consisted of a spike and a plateau.The spike was a spurious result,while the plateau part resulted from the field-induced itinerant-electron metamagnetic(IEM) transition above TC,which went up with magnetic fields increasing.The width of the magnetic entropy change increased with magnetic fields at a rate of dL?S /dT~4 K/T.  相似文献   

7.
With the intention to explore excellent magnetocaloric materials, the intermetallic compound GdPd was synthesized by arc melting and heat treatment. The microstructure, magnetic and magnetocaloric properties of the intermetallic compound of GdPd were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the physical property measurement system(PPMS). A large reversible magnetocaloric effect is observed in GdPd accompanied by a second order magnetic phase transition from paramagnetism to ferromagnetism at ~39 K. The paramagnetic Curie temperature(θp) and the effective magnetic moment(μ_(eff))are determined to be 34.7 K and 8.12 μ_B/Gd,respectively. The maximum entropy change(|△S_M~(Max)|) and the relative cooling power(RCP) under a field change of 5 T are estimated to be 20.14 J/(kg·K) and 433 J/kg, respectively. The giant reversible magnetocaloric effects(both the large△S_M and the high RCP) together with the absence of thermal and field hysteresis make the GdPd compound an attractive candidate for low-temperature magnetic refrigeration.  相似文献   

8.
Magnetocaloric effect and magnetic properties of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 and its hydride La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 were investigated. The Curie temperature of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 was increased by hydrogen absorption. XRD patterns showed that the structure of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 remained NaZn13-type. The Curie temperature (TC) of the sample was increased from 174 K to 331 K. The homogeneity of the hydrogen absorption for La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 was proven very well by the random measurement of DSC. The magnetic entropy △SM of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 had peak at 326 K. The peak value of-△SM-was 12.3 and 7.8 J/(kg.K) under magnetic field change of 0-2 T and 0-1 T,respectively,which was comparable with Gd5Si2Ge2. The negative slope and inflection point of the Arrott curve indicated that the first-order magnetic transition of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 was reserved after hydrogen absorption.  相似文献   

9.
In this comparative study,Tb and Tm substituted Sr-hexafe rrites(HFs) with the chemical compositions of SrTb_xFe_(12-x)O_(19) and SrTm_xFe_(12-x)O_(19)(x=0.00,0.02 and 0.04) were fabricated via citrate sol-gel approach.The AC susceptibility and FC-ZFC magnetization were investigated.The product structure and morphologies were also investigated via XRD,TEM and SEM along with EDX.Measurements of temperature dependence of magnetization M-T and AC magnetic susceptibility versus temperature were carried out.The various synthesized HFs displayed ferrimagnetic behavior within 10-325 K.At lower temperatures,super-spin glass-like behavior was noticed.Neel-Arrhenius and Vogel-Fulcher models were employed to explore the experimental data of AC susceptibility.  相似文献   

10.
(Cu60Zr30Ti10)98Y2 bulk metallic glass(Φ4 mm×70 mm) was obtained successfully by copper mould cooling and spraying-casting,and some samples were isothermally annealed at temperatures of 473 and 623 K,which was lower than the glass transition temperature(Tg) for 1 h.Microstructure and properties of as-cast and annealed samples were studied.Crystallization phases(Cu10Zr7 and CuZr) were observed in annealed samples,and the species and fraction of these phases increased with increasing annealing temperature.Mic...  相似文献   

11.
The room temperature creep behaviors of Mg61Cu28Gd11 and(Mg61Cu28Gd11)99.5Sb0.5 bulk metallic glasses(BMGs) were revealed by means of nanoindentation technique.The creep mechanism was explored by characterization of creep rate sensitivity,creep compliance and retardation spectra.The results showed that the experimental creep curves could be well described by a generalized Kelvin model.The low creep rate sensitivity of both Mg-based BMGs indicated that their room temperature creep was dominated by localized shear flow.In addition,the(Mg61Cu28Gd11)99.5Sb0.5 glassy alloy exhibited lower creep rate sensitivity,creep compliance and milder retardation peak,indicating its higher creep-resistance and less relaxed state.Furthermore,the creep retardation spectrum consisted of two relatively separated peaks with the well defined characteristic relaxation times.  相似文献   

12.
In the present work, anisotropic Nd_2 Fe_(14) B/Sm_2 Co_(17) hybrid-bonded magnets were prepared with different Nd-Fe-B contents. It is found that the particle distributions and ratios between the two magnetic phases have important roles in the magnetic properties, microstructures and thermal stability of the magnets. With increase of Nd-Fe-B content, the saturation magnetization of the anisotropic hybrid magnet increases significantly, however, coercivity decreases, and the demagnetization curves show magnetically single-phase behavior. The anisotropic Nd_2 Fe_(14) B/Sm_2 Co_(17) hybrid-bonded magnets exhibit a maximum energy product and remanence of 14.15 MGOe and 99.53 A·m~2/kg, respectively, when the NdFe-B content is 70 wt% at room temperature. Furthermore, the hybrid magnets also have better thermal stability at elevated temperatures due to the interaction between the two magnetic particles.  相似文献   

13.
The luminescent rare earth (RE) complex based multifunctional nanocomposites offer new potential applications of multimodal imaging (magnetic resonance imaging (MRI), fluorescent bioimaging, etc.) that can be associated with therapeutic activities. In this study, we report some results obtained with novel multifunctional Fe3O4/Si-amine/Eu(NTA)3 nanocomposites that are composed of europium(III) complex with 1-(2-naphthoyl)-3,3,3-trifluoroacetone ligands (NTA) (Eu(NTA)3) and superparamagnetic Fe3O4 nanoparticles. These nanocomposites were functionalized with an amine group for biomedicine application. The multifunctional Fe3O4/Si-amine/Eu(NTA)3 nanocomposites exhibit both good magnetic behavior of Fe3O4 nanoparticles as a core and strong fluorescent property of europium(III) complex. Their characterizations were analyzed by XRD, SEM, EDX and FTIR spectra. The optical properties were studied in detail by UV-VIS spectra and luminescent emission spectra. The magnetic property was estimated by VMS. The effect of concentrations of luminescent Eu(NTA)3 complex on luminescent and magnetic properties is discussed.  相似文献   

14.
The multilayered structure thin films(Gd_2(MoO_4)_3:Ho(Tm)/Yb@Gd_2(MoO_4)_3:Yb)) were prepared through sol-gel and spin-coating method,while the average thinness was nearly 140 nm.We investigated the up-conversion luminescence of Gd2(MoO_4)3:Ho(Tm)/Yb@Gd2(MoO_4)3:Yb thin films,The results show that the double-layer structured thin films are able to increase the emission intensity.The fluorescence enhancement factors of the luminescence from Gd2(MoO_4)3:Ho/Yb@Gd2(MoO_4)3:Yb thin films,located at540 and 662 nm,reach 7.5 and 4.3,respectively.And the enhancement factors of emissions located at450,475 and 650 nm(Gd_2(MoO_4)3:Tm/Yb@Gd_2(MoO_4)_3:Yb)) reach 9,2 and 2,respectively.The considerable enhancement is due to the suppression of surface quenching and energy harvesting via the Yb ions in the outer shell.In addition,the emission color of thin films can be modulated from yellow to blue via tuning the number of Gd2(MoO_4)3:Ho/Yb and Gd2(MoO_4)3:Tm/Yb layers,which provides a feasible strategy to tune the up-conversion emission color.  相似文献   

15.
We report the fabrication of bulk anisotropic(SmCo+FeCo)/NdFeB multicomponent nanocomposite magnets using high-pressure thermal compression(HPTC).The correlations among microstructure,magnetic properties,heating temperature and composition of the HPTC nanocomposite magnets were studied.The HPTC magnet made under variable temperatures(VT),with 19 wt% of FeCo phase,exhibits a maximum energy product of 32 MGOe,which is much higher than that(14 MGOe) for the HPTC magnet made under a constant temperature(CT).When the FeCo content increases to~23 wt%,the HPTC magnet made under VT still remains a high energy product of about 25 MGOe.With increasing NdFeB content,the(SmCo+FeCo)/NdFeB multicomponent nanocomposite magnets exhibit an enhanced magnetic anisotropy and coercivity.This work is beneficial to fabricating high-performance and low-cost permanent magnets for practical applications.  相似文献   

16.
Nonlinearopticalmaterialshavebeenattractedmanymaterialsscientistsandchemistsfortheirimportantroteinmodernlasertechnology.A...  相似文献   

17.
The effect of wheel speed on phase formation and magnetic properties of (Nd0.4La0.6)15Fe77.5B7.5 and (Nd0.4La0.6)13.4Fe79.9B6.7 ribbons prepared by melt-spinning method was investigated experimentally. Based on X-ray diffraction results, all melt-spun ribbons consist of the main phase with the tetragonal 2:14:1 type structure and the minor α-Fe phase. Magnetic measurements show the maximum magnetic energy product ((BH)max) and the remanence (Mr) increases firstly and then decreases with the increase of wheel speed, while the coercivity (Hci) increases, resulting from the variation of the average volume fraction of the α-Fe phase and the average grain size in the melt-spun ribbons. Using Henkel plots, the interaction between the 2:14:1 phase and the α-Fe phase in the melt-spun ribbons was analyzed and the intergranular exchange coupling is manifested. Optimal magnetic properties of Hci = 7.27 kOe, Mr = 90.94 emu/g and (BH)max = 12.10 MGOe are achieved in the (Nd0.4La0.6)15Fe77.5B7.5 ribbon with the wheel speed of 26 m/s. It indicates that magnetic properties of Nd-Fe-B melt-spun ribbons with highly abundant rare earth element La can be improved by optimizing alloy composition and preparation process.  相似文献   

18.
Copper and rare earth-doped (RE = La, Gd, Nd) CuFe1.85RE0.15O4 nanoferrites were prepared using the sonochemical method. The effective doping of rare-earth (La3+, Nd3+, Gd3+) ions with copper nanoferrites was confirmed by X-ray diffraction. The tetrahedral and octahedral sites of the nanoferrites were identified through the Fourier transform infrared spectra. The doping of rare-earth elements enhances the optical bandgap energy of the nanoferrites that are observed through Ultraviolet–DRS spectra. The oxidation state of the elements Cu 2p, La 3d, Nd 3d, Gd 3d, Fe 2p and O 1s was analyzed. Scanning electron microscopy images indicate a spherical morphology with agglomeration to some elongate. The values of dielectric constant and conductivity decrease considerably due to doping rare-earth ions in copper nanoferrites. Low saturation magnetization and high coercivity values of rare earth-doped copper nanoferrites are observed from the typical hysteresis curves.  相似文献   

19.
Inviewofenergysavingandenvironmentalpro tection ,magneticrefrigerationnearroomtemperaturehasastrongimpactonconventionalgascompressiontechnology .However ,coolingefficiencyofthesystemformagneticrefrigerationismainlydecidedbythemagnitudeofmagnetocaloriceffectformagneticrefrig eratingmaterialsinthesystemunderacertainmagnet icfieldchange .Therefore ,developmentofnewrefrig eratingmaterialswithgreatmagnetocaloriceffectnearroomtemperatureisespeciallyimportant .Therearetwoparameterswhichareusedtochara…  相似文献   

20.
Highly ordered Tb_xFe_7 Co_3(x=0,0.6,0.8) nanowires were synthesized in alumina templates by electrochemical deposition method.Here,the effects of Tb content and annealing treatment on the phase composition,morphology,crystalline structure and magnetic properties were investigated.The asdeposited Tb_0 Fe_7 Co_3 nanowires comprise Fe_7 Co_3 phase.While after adding Tb,the diffraction peaks slightly shift left,indicating the infiltration of Tb atoms into Fe_7 Co_3 phase.After annealing,Tb_0 Fe_7 Co_3 nanowires still consist of Fe_7 Co_3 phase with a slight enhancement on coercivity.While the annealed nanowires with Tb doped present a complex phase composition containing Fe3 Tb,Fe_2 Tb,Co_3 Tb,Co_(17)Tb_2,TbFeO_3 and Fe_2 O_3 phases distribute in the central portion,and Co_(0.72)Fe_(0.28) at the nanowire outer walls.The annealed Tb_xFe_7 Co_3(x=0.6,0.8) nanowires show higher magnetic performance owing to the formation of hard magnetic phases,the interfacial elastic coupling between hard and soft phases and the coherent Fe3 Tb/Co_3 Tb interface which restrain the domain wall motion.To be specific,the coercivity and remanence ratio of TbxFe_7 Co_3(x=0.6,0.8) nanowires significantly enhance with increasing Tb content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号