首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以Bacillus subtilis NX-2产γ-谷氨酰转肽酶为催化剂,以L-谷氨酰胺和S-苄基-L-半胱氨酸为底物,利用转肽反应合成了S-苄基-γ-L-谷氨酰-L-半胱氨酸,考察了反应时间、初始酶浓度、供体/受体比以及投料方式等条件对反应过程的影响.结果表明,在L-谷氨酰胺浓度为20 mmol/L,S-苄基-L-半胱氨酸浓度为20 mmol/L,酶浓度为0.0208 U/mL以及pH9条件下,于40℃水浴中反应3 h,S-苄基-γ-L-谷氨酰-L-半胱氦酸得率为5.14 mmol/L,对谷胺酰胺的转化率为25.7%.采用分批投料方式可有效提高谷氨酰供体转化率.S-苄基-γ-L-谷氨酰-L-半胱氨酸以三氟甲磺酸脱除苄基保护基,经RPC纯化后可得产物GGC,产物纯度为91.2%,收率为75.7%.  相似文献   

2.
以Bacillus subtilis NX-2产γ-谷氨酰转肽酶(GGT)为催化荆,以L-谷氨酰胺(L-Gln)为γ-谷氨酰基供体,S-苄基-L-半胱氨酸(S-Bal-Cys)为受体,催化合成了S-苄基-γ-L-谷氨酰-L-半胱氨酸(S-Bzl-GGC).在反应机理分析的基础上,建立了定量描述该过程的动力学模型,模型计算值和实测值能较好吻合,平均相对误差为5.57%.通过模型分析得知,供体浓度的增加有利于转肽反应,但更多的是自转肽反应;受体浓度增加对提高转肽产物S-Bzl-GGC有一定的作用,对自转肽反应几乎没有影响;酶含量增加提高了反应速率,但不提高转肽产物的最大浓度.  相似文献   

3.
以有序介孔TiO2(OM-TiO2)为载体对B.subtilis NX-2GGT进行吸附固载.圆二色光谱分析和活性位点滴定结果表明,固定化前后酶的二级结构和活性位点数变化很小,固定化后GGT对供体的亲和力及转肽反应催化常数均有不同程度下降,但固定化酶对产物的亲和力有明显提高.固定化后GGT的热稳定性和pH稳定性均较游离酶有显著提高,固定化酶稳定性良好,经10批次转化后,固定化催化活性仍保持74%.以固定化GGT为催化剂,在L-谷氨酰胺(L-Gln)5mmol/L、S-苄基-半胱氨酸(S-bzl-cys)15mmol/L、酶浓度0.062U/mL和pH9.0条件下,40℃水浴反应5h,产物浓度为1.2mmol/L.  相似文献   

4.
以有序介孔TiO2(OM-TiO2)为载体对B. subtilis NX-2 GGT进行吸附固载. 圆二色光谱分析和活性位点滴定结果表明,固定化前后酶的二级结构和活性位点数变化很小,固定化后GGT对供体的亲和力及转肽反应催化常数均有不同程度下降,但固定化酶对产物的亲和力有明显提高. 固定化后GGT的热稳定性和pH稳定性均较游离酶有显著提高,固定化酶稳定性良好,经10批次转化后,固定化催化活性仍保持74%. 以固定化GGT为催化剂,在L-谷氨酰胺(L-Gln) 5 mmol/L、S-苄基-半胱氨酸(S-bzl-cys) 15 mmol/L、酶浓度0.062 U/mL和pH 9.0条件下,40℃水浴反应5 h,产物浓度为1.2 mmol/L.  相似文献   

5.
采用离子交换法对酶法合成的S-苄基-g-L-谷氨酰-L-半胱氨酸(S-Bzl-GGC)进行了分离纯化. 研究了Q Sephrose FF阴离子交换树脂对S-Bzl-GGC的吸附等温线,很好地符合Sips吸附等温线模型. 考察了pH值、洗脱梯度、流速和进样量等条件对纯化效果的影响,建立了一套基于Q Sephrose FF阴离子交换树脂的纯化方案. 结果表明,在pH 8.2、洗脱梯度0~30% B(Tris-HCl缓冲液+1 mol/L NaCl) 12 mL、流速2 mL/min、进样量500 mL的优化条件下,经一步分离,产物纯度可达98.5%,经1H-NMR鉴定产物结构正确.  相似文献   

6.
利用重组色氨酸合成酶催化合成S-苯基-L-半胱氨酸,考察了反应温度、pH、底物摩尔比和底物浓度对色氨酸合成酶酶活的影响。最佳转化条件为:反应温度为37℃,pH=8,苯硫酚与L-丝氨酸的适宜底物摩尔比为1.2∶1,底物最适合浓度为400 mmol/L,反应达到平衡时间为16 h,底物L-丝氨酸摩尔转化率达到91%,苯硫酚与色氨酸合成酶活性位点Ser 235和Gly 233形成稳定的氢键。  相似文献   

7.
由溴化苄和L-半胱氨酸直接合成S-苄基-L-半胱氨酸,通过正交试验及统计分析,检验了各影响因子的显著性,确定了最佳工艺条件为:反应时间2.5h,反应温度45℃,原料配比n(溴化苄):n(L-半胱氨酸)=1:1.在此条件下反应,摩尔产率可达到95%.  相似文献   

8.
利用重组色氨酸合成酶催化合成S-苯基-L-半胱氨酸,考察了反应温度、pH、底物摩尔比和底物浓度对色氨酸合成酶酶活影响。最佳转化条件为:反应温度为37 篊,pH为8,L-丝氨酸与苯硫酚的适宜底物摩尔比为1:1.2,底物最适合浓度为400 mmol/L,反应达到平衡时间为16 h,底物L-丝氨酸摩尔转化率达到91%,苯硫酚与色氨酸合成酶活性位点Ser 235和Gly 233形成稳定的氢键。  相似文献   

9.
γ-谷氨酰转肽酶的酶学性质及其转肽反应机制   总被引:2,自引:1,他引:1  
γ-谷氨酰转肽酶(γ-glutamyltranspeptidase,GGT)能专一地催化γ-谷氨酰基的转移,在γ-谷氨酰基类衍生物的合成方面具有重要的应用价值.今利用Bacillus subtilis NX-2发酵生产GGT,上清液中的GGT经硫酸铵沉淀后,以DEAE Sepharose FF和 Source 15 Q 两步离子交换进行纯化.以γ-D-Gln-L-Trp(SCV-07)为目的产物,研究了GGT的基本酶学性质,确定了其最适反应温度为40 ℃,最适Ph值10.0, 供体/受体浓度为5:7,最适反应时间为4 h,产物转化率可高达42%.结合反应进程曲线,分析了GGT的作用机制,并通过实验证实了GGT不仅具有转肽活性,还可催化产物的不可逆水解,这是导致产物回收率下降的关键原因.经测定得到GGT的转肽反应米氏常数(Km)为5.08 mmol·L-1,最大反应速率(rmax)为0.034 mmol·(min·L)-1;对γ-D-Gln-L-Trp的水解反应米氏常数(Km')为2.267 mmol·L-1,最大反应速率(rmax')为0.012 mmol·(min·L)-1.  相似文献   

10.
酶法拆分氮-15标记S-苄基-半胱氨酸的研究   总被引:2,自引:0,他引:2  
S-苄基-半胱氨酸是化学法制备氮-15(^15N)标记胱氨酸及其衍生物的重要前体,以S-苄基-D,L-半胱氨酸为拆分底物,对氨基酰化酶酶促拆分工艺如反应温度、初始pH值、酶和底物的用量、反应时间等工艺参数进行了考察。在较佳的工艺条件下,苄基-L-半胱氨酸拆分的单程收率达到45%,未出现同位素丰S-度稀释现象。  相似文献   

11.
采用静电纺丝技术制备苯乙烯-马来酸酐共聚物纳米纤维,最佳电纺条件为:聚合物浓度0.35 g/mL、针尖到接收板距离25 cm、电纺液流量250 mL/h、电压21 kV. 该条件下获得了直径约300 nm且分布均一的纳米纤维. 利用该纳米纤维固定b-D-半乳糖苷酶,固定化反应的最适pH值为4.0,此时酶负载量为(15.1±0.5) mg/g. 固定化酶催化2-硝基苯酚-b-D-半乳吡喃糖苷水解反应的米氏常数Km=2.7 mmol/L,略大于游离酶的Km值(2.2 mmol/L);最大反应速率Vmax为97.2 mmol/(min×mg),为游离酶的47.8%. 固定化酶在37℃下重复操作21次后活性损失仅为15%. 在连续搅拌式反应器中将固定化酶用于催化乳糖的水解反应,连续使用17 d仍能稳定运行.  相似文献   

12.
采用静电纺丝技术制备苯乙烯-马来酸酐共聚物纳米纤维,最佳电纺条件为:聚合物浓度0.35g/mL、针尖到接收板距离25cm、电纺液流量250μL/h、电压21kV.该条件下获得了直径约300nm且分布均一的纳米纤维.利用该纳米纤维固定β-D-半乳糖苷酶,固定化反应的最适pH值为4.0,此时酶负载量为(15.1±0.5)mg/g.固定化酶催化2-硝基苯酚-β-D-半乳吡喃糖苷水解反应的米氏常数K_m=2.7mmol/L,略大于游离酶的K_m值(2.2mmol/L);最大反应速率V_(max)为97.2μmol/(min·mg),为游离酶的47.8%.固定化酶在37℃下重复操作21次后活性损失仅为15%.在连续搅拌式反应器中将固定化酶用于催化乳糖的水解反应,连续使用17d仍能稳定运行.  相似文献   

13.
S-苯基-L-半胱氨酸合成的反应动力学及反应机理的研究   总被引:1,自引:0,他引:1  
运用过量浓度法和微分法研究合成S-苯基-L-半胱氨酸的反应速率随反应物浓度变化的规律,确定了S-苯基-L-半胱氨酸合成反应的速率常数和反应级数,建立了反应速率方程,同时探讨了反应机理,为进一步优化反应条件提供了理论基础,并且通过实验找到了反应的最佳条件。  相似文献   

14.
以聚合松香(PR)为原料,分别与Cu2+、Ca2+、Ni2+和Mg2+等4种金属离子反应制备相应配合物,再对漆树漆酶进行固定化,得固定化酶PRCuEn、PRCaEn、PRNiEn、PRMgEn,考察了固定化酶的性能.结果表明,4种固定化酶均具有较好的重复使用性,其中PRCuEn使用5次后,相对活力为53.6%;以愈创木酚为底物时,PRCuEn的最适温度为40~45℃(较游离酶高5~10℃),其最适pH值为5.0(较游离酶最适pH值9.0明显向酸性偏移).  相似文献   

15.
甲壳素及其衍生物资源来源广泛、具有生物安全性,在材料、食品、化工等领域拥有良好的应用前景。本研究首次尝试采用经表面活化的甲壳素为包埋材料对产腈水解酶的G. intermedia游离细胞进行固定化,对固定化条件进行了初步优化,选取甲壳素质量分数3%,三聚磷酸钠质量分数7%,固定化时间5 h,固定菌体浓度为20g/L时催化活力达到最高。对固定化细胞的催化应用特性进行了表征,结果表明固定化细胞对4-氰基吡啶转化反应的最适反应温度为50℃,最适pH值为7.0;最适底物浓度为125mmol/L,最大产物耐受浓度为400mmol/L,均明显优于游离细胞。探索了将制备的固定化细胞直接应用于4-氰基吡啶生物转化合成异烟酸,固定化细胞可重复利用14批次,而相应游离细胞仅为3次。  相似文献   

16.
明胶膜固定化脲酶的制备及性质   总被引:7,自引:0,他引:7  
以明胶为载体,戊二醛为交联剂,采用包埋-交联联用法制备了明胶膜固定化脲酶,其酶活力为6 07U/g载体,酶活力收率为66 1%。最优固定化条件是包酶量为10mg酶/g明胶,ρ(明胶)=100g/L,φ(戊二醛)=0 5%。研究了固定化酶的性质,并与游离酶作了比较,游离酶的最适pH=7 0,固定化酶的最适pH=6 5;游离酶的最适温度为60℃,固定化酶的最适温度升至70℃;固定化酶与游离酶的米氏常数Km分别为11 7mM和12 4mM;固定化酶在80℃下180min仍保留初始活力的10%,而游离酶几乎完全失活。固定化酶重复使用20次其活力仅下降15%,4℃下贮存35d后仍保持初始活力的55%。  相似文献   

17.
以氨基修饰的磁性SiO2纳米粒子为载体,通过交联剂戊二醛固定漆酶,对固定化条件进行了优化,比较了固定化酶与游离酶的酶学性质. 结果表明,漆酶固定化的最佳条件为戊二醛浓度8%(w),固定化时间6 h,缓冲液pH值7.0,初始酶液浓度0.15 g/L. 固定化的漆酶的最适pH为4.0,最适温度为20℃. 在60℃条件下保温4 h,固定化漆酶仍能保持酶活力60.9%,在连续10次操作后,酶活力仍能保持55%以上,其热稳定性和操作稳定性均比游离酶高.  相似文献   

18.
采用sol-gel法固定化漆酶,最佳固定化条件为:聚乙二醇分子量PEG600;聚乙二醇添加量1.5%;酶液浓度15mg/mL;水/前驱体质量比1:6;缓冲液pH值4.5。固定化漆酶活性保持在游离漆酶的50%以上,最适反应温度为60℃,最适pH值为pH4.5。同时,热稳定性、酸碱稳定性和贮存稳定性都有明显的提高。当以ABTS为底物时,固定化漆酶的K_m值(122.8μmol/L)比游离漆酶的K_m值(32.9μmol/L)高,与底物的亲和力有所降低。  相似文献   

19.
海藻酸钠-明胶协同固定化S-腺苷甲硫氨酸合成酶的研究   总被引:1,自引:0,他引:1  
以海藻酸钠和明胶为载体,对S-腺苷甲硫氨酸合成酶进行固定化。再用戊二醛对其进一步交联,增强固定化酶的稳定性。考察了海藻酸钠和明胶质量分数、CaCl2质量分数、酶和载体比例以及交联剂戊二醛体积分数等因素对固定化酶的影响。结果表明,最佳固定化条件为:海藻酸钠质量分数2.0%、明胶质量分数1.0%、CaCl2质量分数4.0%、固定化酶量为2.5 g/L凝胶、戊二醛体积分数0.6%。交联固定化酶热稳定性得到大幅度提高,在50℃下保温5 h仍保留72%的活力,而游离酶则完全失活。交联固定化酶在碱性溶液中的稳定性较高,在pH=8.0~9.0的缓冲液中4℃保温10 h酶活性仍保留87%以上。将交联固定化酶用于S-腺苷甲硫氨酸的合成,连续反应8批次后酶活性仍保留65%。  相似文献   

20.
以陶瓷为第一载体、壳聚糖为二次载体、戊二醛为交联剂,采用共价结合和吸附联用法制备固定化漆酶,并研究了固定化漆酶的性质.固定化酶最适pH为3.0,最适温度分别为25℃和50℃,均与游离酶相同.在pH 3.0,温度25℃时,固定化酶对ABTS的表观米氏常数为66.64 μmol/L.与游离酶相比,固定化酶的热稳定性明显提高,并具有良好的贮存和操作稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号