首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fructose-1,6-bisphosphatase deficiency is an inheritable disorder of gluconeogenesis. Sequence analysis of the cDNA of the fructose-1,6-bisphosphatase mRNA isolated from monocytes from a girl with this disease and her consanguineous parents revealed that the patient and her parents were a homozygote and heterozygotes for an insertion of one G residue at G957GGGG961, respectively. This mutation resulted in translation of a truncated enzyme protein, and the mutant protein showed no fructose-1,6- bisphosphatase activity in an overexpression experiment in Escherichia coli. However, this mutation is located in a region of the amino acid sequence which is not well conserved among mammals. A mutagenized clone was prepared from the normal clone. The extents of substitutions and deletions of the amino acid sequence were predicted to be less in the mutagenized protein than in the mutant protein. This mutagenized clone also expressed no fructose-1,6-bisphosphatase activity, although both of two normal clones from control monocytes and a control liver sample expressed an apparently normal level of fructose-1,6-bisphosphatase activity. Thus, this mutation is concluded to be responsible for fructose-1,6-bisphosphatase deficiency in this patient.  相似文献   

2.
In the past 5 years we have discovered 8 boys and 3 girls who suffer from fructose-1,6-bisphosphatase deficiency. Although they all showed the typical symptoms of the deficiency such as frequent vomiting, hypoglycemia, lactic acidosis, and hepatomegaly, the age at diagnosis varied from 2 months to 4 years. All the boys revealed the deficient enzyme activity in leukocytes but none of the girls. The liver biopsy was investigated in six patients to confirm the diagnosis. These results suggest the existence of tissue-specific isoenzymes for fructose-1,6-bisphosphatase possibly with a different gene origin.  相似文献   

3.
The region of the genome encoding the glucose-6-phosphate dehydrogenase gene zwf was analysed in a unicellular cyanobacterium, Synechococcus sp. PCC 7942, and a filamentous, heterocystous cyanobacterium, Anabaena sp. PCC 7120. Comparison of cyanobacterial zwf sequences revealed the presence of two absolutely conserved cysteine residues which may be implicated in the light/dark control of enzyme activity. The presence in both strains of a gene fbp, encoding fructose-1,6-bisphosphatase, upstream from zwf strongly suggests that the oxidative pentose phosphate pathway in these organisms may function to completely oxidize glucose 6-phosphate to CO2. The amino acid sequence of fructose-1,6-bisphosphatase does not support the idea of its light activation by a thiol/disulfide exchange mechanism. In the case of Anabaena sp. PCC 7120, the tal gene, encoding transaldolase, lies between zwf and fbp.  相似文献   

4.
In the gluconeogenic pathway, fructose-1,6-bisphosphatase (EC 3. 1. 3. 11) is the last key-enzyme before the synthesis of glucose-6-phosphate. The extreme diversity of cells present in the whole brain does not facilitate in vivo study of this enzyme and makes it difficult to understand the regulatory mechanisms of the related carbohydrate metabolism. It is for instance difficult to grasp the actual effect of ions like potassium, magnesium and manganese on the metabolic process just as it is difficult to grasp the effect of different pH values and the influence of glycogenic compounds such as methionine sulfoximine. The present investigation attempts to study the expression and regulation of fructose-1,6-bisphosphatase in cultured astrocytes. Cerebral cortex of new-born rats was dissociated into single cells that were then plated. The cultured cells were flat and roughly polygonal and were positively immunostained by anti-glial fibrillary acidic protein antibodies. Cultured astrocytes are able to display the activity of fructose-1,6-bisphosphatase. This activity was much higher than that in brain tissue in vivo. Fructose-1,6-bisphosphatase in cultured astrocytes did not require magnesium ions for its activity. The initial velocity observed when the activity was measured in standard conditions was largely increased when the enzyme was incubated with Mn2+. This increase was however followed by a decrease in absorbance resulting in the induction, by the manganese ions, of a singular kinetics in the enzyme activity. Potassium ions also stimulated fructose-1,6-bisphosphatase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The structural transformation of fructose-1,6-bisphosphatase upon binding of the allosteric regulator AMP dramatically changes the interactions across the C1-C4 (C2-C3) subunit interface of the enzyme. Asn9, Met18, and Ser87 residues were modified by site-directed mutagenesis to probe the function of the interface residues in porcine liver fructose-1,6-bisphosphatase. The wild-type and mutant forms of the enzyme were purified to homogeneity and characterized by initial rate kinetics and circular dichroism (CD) spectrometry. No discernible alterations in structure were observed among the wild-type and Asn9Asp, Met18Ile, Met18Arg, and Ser87Ala mutant forms of the enzyme as measured by CD spectrometry. Kinetic analyses revealed 1.6- and 1.8-fold increases in kcat with Met18Arg and Asn9Asp, respectively. The K(m) for fructose 1,6-bisphosphate increased about 2-approximately 4-fold relative to that of the wild-type enzyme in the four mutants. A 50-fold lower Ka value for Mg2+ compared with that of the wild-type enzyme was obtained for Met18Ile with no alteration of the Ki for AMP. However, the replacement of Met18 with Arg caused a dramatic decrease in AMP affinity (20 000-fold) without a change in Mg2+ affinity. Increases of 6- and 2-fold in the Ki values for AMP were found with Asn9Asp and Ser87Ala, respectively. There was no difference in the cooperativity for AMP inhibition between the wild-type and the mutant forms of fructose-1,6-bisphosphatase. This study demonstrates that the mutation of residues in the C1-C4 (C2-C3) interface of fructose-1,6-bisphosphatase can significantly affect the affinity for Mg2+, which is presumably bound 30 A away. Moreover the mutations alternatively reduce AMP and Mg2+ affinities, and this finding may be associated with the destabilization of the corresponding allosteric states of the enzyme. The kinetics and structural modeling studies of the interface residues provide new insights into the conformational equilibrium of fructose-1,6-bisphosphatase.  相似文献   

6.
We have previously demonstrated that in isolated hepatocytes from fasted rats, AICAriboside (5-amino 4-imidazolecarboxamide riboside), after its conversion into AICAribotide (AICAR or ZMP), exerts a dose-dependent inhibition on fructose-1,6-bisphosphatase and hence on gluconeogenesis. To assess the effect of AICAriboside in vivo, we measured plasma glucose and liver metabolites after intraperitoneal administration of AICAriboside in mice. In fasted animals, in which gluconeogenesis is activated, AICAriboside (250 mg/kg body weight) induced a 50% decrease of plasma glucose within 15 min, which lasted about 3 h. In fed mice, glucose decreased by 8% at 30 min, and normalized at 1 h. Under both conditions, ZMP accumulated to approximately 2 mumol/g of liver at 1 h. It decreased progressively thereafter, although much more slowly in the fasted state. Inhibition of fructose-1,6-bisphosphatase was evidenced by time-wise linear accumulations of fructose-1,6-bisphosphate, from 0.006 to 3.9 mumol/g of liver at 3 h in fasted mice, and from 0.010 to 0.114 mumol/g of liver at 1 h in fed animals. AICAriboside did not significantly influence plasma insulin or glucose utilization by muscle. We conclude that in vivo as in isolated hepatocytes, AICAriboside, owing to its conversion into ZMP, inhibits fructose-1,6-bisphosphatase and consequently gluconeogenesis.  相似文献   

7.
The nucleotide sequence of 1981 bp cDNA containing the entire coding region of a human placental fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase was determined. The sequence encodes 469 amino acids and, based on homology to the rat testis enzyme, appears to be the testis-type isozyme expressed in placenta. The enzyme was expressed in Escherichia coli BL21 (DE3) by using a T7 RNA polymerase-based expression system and purified to homogeneity. The expressed enzyme was bifunctional with specific activities of 75 and 80 mU/mg of kinase and phosphatase, respectively. Kinetic parameters of the expressed enzyme are similar to those of the rat testis enzyme.  相似文献   

8.
Chloroplast thioredoxin-f functions efficiently in the light-dependent activation of chloroplast fructose-1, 6-bisphosphatase by reducing a specific disulfide bond located at the negatively charged domain of the enzyme. Around the nucleophile cysteine of the active site (-W-C-G-P-C-), chloroplast thioredoxin-f shows lower density of negative charges than the inefficient modulator Escherichia coli thioredoxin. To examine the contribution of long range electrostatic interactions to the thiol/disulfide exchange between protein-disulfide oxidoreductases and target proteins, we constructed three variants of E. coli thioredoxin in which an acidic (Glu-30) and a neutral residue (Leu-94) were replaced by lysines. After purification to homogeneity, the reduction of the unique disulfide bond by NADPH via NADP-thioredoxin reductase proceeded at similar rates for all variants. However, the conversion of cysteine residues back to cystine depended on the target protein. Insulin and difluoresceinthiocarbamyl-insulin oxidized the sulfhydryl groups of E30K and E30K/L94K mutants more effectively than those of wild type and L94K counterparts. Moreover, the affinity of E30K, L94K, and E30K/L94K E. coli thioredoxin for chloroplast fructose-1,6-bisphosphatase (A0.5 = 9, 7, and 3 microM, respectively) increased with the number of positive charges, and was higher than wild type thioredoxin (A0.5 = 33 microM), though still lower than that of thioredoxin-f (A0.5 = 0.9 microM). We also demonstrated that shielding of electrostatic interactions with high salt concentrations not only brings the A0.5 for all bacterial variants to a limiting value of approximately 9 microM but also increases the A0.5 of chloroplast thioredoxin-f. While negatively charged chloroplast fructose-1,6-bisphosphatase (pI = 4.9) readily interacted with mutant thioredoxins, the reduction rate of rapeseed napin (pI = 11.2) diminished with the number of novel lysine residues. These findings suggest that the electrostatic interactions between thioredoxin and (some of) its target proteins controls the formation of the binary noncovalent complex needed for the subsequent thiol/disulfide exchange.  相似文献   

9.
A rapid procedure for the purification of the redox-regulated chloroplast fructose-1,6-bisphosphatase [EC 3.1.3.11] from spinach leaf extract to homogeneity is described. No thiol-reducing agents were present during the purification and the enzyme is > 99% in the oxidized form. A rapid procedure to reduce and activate the Fru-1,6-P2ase by dithiothreitol in the absence of thioredoxin is described. Reduction activates the enzyme up to several hundred-fold when assayed at pH 8.0 with 2 mM Mg2+. The activity of the purified oxidized enzyme is unusually sensitive to changes in Mg2+ and H+ concentration. Tenfold changes in Mg2+ or H+ concentration lead to > 100-fold increases in activity. The recoveries of fructose-1,6-bisphosphatase activity as determined by the activity of the oxidized enzyme at pH 8.0/20 mM Mg2+; pH 9.0/2 mM Mg2+; pH 8/2 mM Mg2+ plus 0.1 mM Hg(II) or of the reduced enzyme at pH 8.0/2 mM Mg2+ are similar (approximately 40%) indicating that the major proportion of these activities in a leaf extract is catalyzed by the same enzyme. Moreover, antibodies raised against the purified enzyme inhibit all of the above activities in crude leaf extracts. The kinetic properties of the purified enzyme suggest that the oxidized Mg(2+)-dependent enzyme can play no significant role in photosynthetic carbon assimilation. A survey of some kinetic properties of Fru-1,6-P2ase activity in extracts of various photosynthetic organisms reveals that all 11 species examined possess a redox- and pH/Mg(2+)-stimulated Fru-1,6-P2ase, whereas Fru-1,6-P2ase in extracts of Taxus baccata (a gymnosperm), Chlorella vulgaris (a green alga), and the cyanobacterium Nostoc muscorum were not activated by Hg(II). The heat stability that proved useful in the purification of the spinach enzyme was conserved in both angiosperms and gymnosperms. The oxidized enzyme (which normally has no thiol groups accessible to 5,5'-dithio-bis[2-nitrobenzoic acid]) but not the reduced enzyme can be stimulated many hundred-fold by addition of extraordinarily low concentrations of Hg(II) to a complete assay mixture. With the aid of EDTA as a Hg(II) buffer, half-maximal stimulation was achieved at 2 x 10(-16) M free Hg(II). Methylmercury also stimulates the enzyme many hundred-fold at very low concentrations. The concentration for half-maximal stimulation by methylmercury was determined with a cyanide buffer to be approximately 10(-16) M. This, together with the high affinity of the enzyme for Hg(II), suggests that Hg(II) stimulates the enzyme by binding to an enzyme thiol group that be comes exposed in the catalytically active enzyme, thereby stabilizing the oxidized enzyme in an active conformation. By contrast, in the absence of Fru-1,6-P2 and either Mg2+ or Ca2+, Hg(II) (even at 2 x 10(-16) M) rapidly inactivates the oxidized Fru-1,6-P2ase. This inactivation is similar to the inactivation of Fru-1,6-P2ase that occurred at high pH (> 9) and which is also prevented by Fru-1,6-P2 and either Mg2+ or Ca2+. Although the Hg(II)- and high pH-inactivated oxidized enzyme has no activity, both forms of the enzyme can be activated by reduction. The usefulness of buffers to maintain low, defined Hg(II) and organic mercurial concentrations is discussed.  相似文献   

10.
The expression of yeast genes encoding gluconeogenic enzymes depends strictly on the carbon source available in the growth medium. We have characterized the control region of the isocitrate lyase gene ICL1, which is derepressed more than 200-fold after transfer of cells from fermentative to nonfermentative growth conditions. Deletion analysis of the ICL1 promoter led to the identification of an upstream activating sequence element, UASICL1 (5' CATTCATCCG 3'), necessary and sufficient for conferring carbon source-dependent regulation on a heterologous reporter gene. Similar sequence motifs were also found in the upstream regions of coregulated genes involved in gluconeogenesis. This carbon source-responsive element (CSRE) interacts with a protein factor, designated Ang1 (activator of nonfermentative growth), detectable only in extracts derived from derepressed cells. Gene activation mediated by the CSRE requires the positively acting derepression genes CAT1 (= SNF1 and CCR1) and CAT3 (= SNF4). In the respective mutants, Ang1-CSRE interaction was no longer observed under repressing or derepressing conditions. Since binding of Ang1 factor to the CSRE could be competed for by an upstream sequence derived from the fructose-1,6-bisphosphatase gene FBP1, we propose that the CSRE functions as a UAS element common to genes of the gluconeogenic pathway.  相似文献   

11.
12.
A Schistosoma mansoni cercarial cDNA expression library, constructed in lambda gt11, was screened using the IgG fraction of sera taken from rabbits vaccinated with irradiated cercariae. A positive cDNA clone (1,431 base pairs) was selected and characterized. The amino acid sequence predicted from the cDNA sequence identified a polypeptide of 363 amino acids that showed significant homology to different family members of the enzyme fructose-1,6-bisphosphate aldolase (EC 1.4.2.13). The identity was 66% and 65% with human C and A isoenzymes, respectively. Active sites and substrate-binding determinant analysis suggest that the isolated enzyme in terms of function resembles type A aldolase. The recombinant protein expressed in the vector pGEX-2T was found to be active enzymatically. Antibodies raised against the purified recombinant protein recognized a 40-kDa band in extracts from cercariae, schistosomula (5 and 25 days), adult worms, and eggs. Using immunocytochemistry, aldolase localized to the tegumental region of the adult worms.  相似文献   

13.
In higher plants, light enhances the activity of chloroplast fructose-1,6-bisphosphatase via a cascade of thiol/disulfide exchanges. We have examined the structural and functional role of seven conserved cysteine residues in the rapeseed (Brassica napus) enzyme by site-directed mutagenesis. After lysis of Escherichia coli cells, C53S and C191S variants partitioned mainly in the insoluble fraction whereas C96S, C157S, C174S, C179S, and C307S mutants were soluble. Homogeneous preparations of the latter hydrolyzed fructose 1,6-bisphosphate at similar rates in the presence of 10 mM Mg2+ but only C157S, C174S and C179S mutants were both efficient catalysts at 1 mM Mg2+ and nearly insensitive to dithiothreitol. These results demonstrate the contribution of Cys53 and Cys191 to the stability of the enzyme and the participation of Cys157, Cys174 and Cys179 in the reductive process responsive of the light-dependent regulation. Given that mutations at Cys96 and Cys307 neither destabilize the enzyme nor affect the reductive modulation, their function remains unknown.  相似文献   

14.
Phosphomannose isomerase catalyses the interconversion of fructose-6-P and mannose-6-P and has a critical role in the supply of D-mannose derivatives required for many eukaryotic glycosylation reactions. Three classes of enzymes possessing phosphomannose-isomerase activity have been identified in bacteria and lower eukaryotes. We have purified human phosphomannose isomerase to homogeneity from placental tissue. Protein sequence information obtained from internal fragments of the protein was used to design degenerate oligonucleotides which were used to amplify a fragment of a human phosphomannose-isomerase cDNA. A full-length cDNA was isolated from a human testes lambda gt11 library using this fragment as a probe. The cDNA encoded a protein with significant sequence identity to fungal and some bacterial phosphomannose isomerases but was unrelated to those from other bacteria. Based on amino acid sequence identity we propose a classification system for enzymes with phosphomannose-isomerase activity. The cDNA, under the control of the GAL1 promoter, was expressed in a Saccharomyces cerevisiae strain from which the native gene encoding phosphomannose isomerase had been deleted. The human enzyme was found to be able to functionally substitute for the yeast enzyme. Phosphomannose-isomerase mRNA was found in all human tissues tested but was more highly expressed in heart, brain and skeletal muscle. The cDNA was expressed in Escherichia coli permitting the isolation of pure recombinant protein which will be used for kinetic and structural studies.  相似文献   

15.
RNA guanylyltransferase (capping enzyme) catalyzes the transfer of GMP from GTP to the 5'-diphosphate end of mRNA. The capping reaction proceeds via an enzyme-guanylate intermediate in which GMP is linked covalently to a lysine residue of the enzyme. In the capping enzyme of Saccharomyces cerevisiae, GMP is attached to a 52-kDa polypeptide, identified as the product of the essential CEG1 gene. The amino acid sequence of the CEG1 protein includes a motif, Lys70-Thr-Asp-Gly, that is conserved at the active site of vaccinia virus RNA guanylyltransferase and which is similar to the KXDG sequence found at the active sites of RNA and DNA ligases. To evaluate the role of this motif in the function of the yeast enzyme, we have expressed the CEG1 protein in active form in Escherichia coli. Replacement of Lys70 or Gly73 with alanine abrogated enzyme-guanylate formation in vitro; in contrast, alanine substitutions at Thr71 or Asp72 merely reduced activity relative to wild-type enzyme. The K70A and G73A mutations were lethal to yeast, whereas yeast carrying the T71A and D72A alleles of CEG1 were viable. These results implicate Lys70 as the active site of yeast guanylyltransferase and provide evidence that cap formation per se is an essential function in eukaryotic cells.  相似文献   

16.
17.
Two distinct types of cDNAs for fructose-1,6-bisphosphate (FBP) aldolase, Ce-1 and Ce-2, have been isolated from nematode Caenorhabditis elegans, and the respective recombinant aldolase isozymes, CE-1 and CE-2, have been purified and characterized. The Ce-1 and Ce-2 are 1282 and 1248 bp in total length, respectively, and both have an open reading frame of 1098 bp, which encodes 366 amino acid residues. The entire amino acid sequences deduced from Ce-1 and Ce-2 show a high degree of identity to one another and to those of vertebrate and invertebrate aldolases. The highest sequence diversity was found in the carboxyl-terminal region that corresponds to one of the isozyme group-specific sequences of vertebrate aldolase isozymes that play a role in determining isozyme-specific functions. Southern blot analysis suggests that CE-1 and CE-2 are encoded by different genes. Concerning general or kinetic properties, CE-2 is quite different from CE-1. CE-1 exhibits unique characteristics which are not identical to any aldolase isozymes previously reported, whereas CE-2 is similar to vertebrate aldolase C. These results suggest that CE-2 might preserve the properties of a progenitor aldolase with a moderate preference for FBP over fructose 1-phosphate (F1P) as a substrate, whereas CE-1 evolved to act as an intrinsic enzyme that exhibits a much broader substrate specificity than dose CE-2.  相似文献   

18.
The fructose-1,6-biphosphate aldolase (EC 4.1.2.13) from Staphylococcus aureus ATCC 12 600 was purified and biochemically investigated. It was found that this aldolase belongs to the class I type of aldolases since the fructose-1,6-bisphosphate cleavage activity was insensitivity to high levels of EDTA. Like class I aldolases of higher organisms, the S. aureus aldolase activity is inhibited on incubation with the substrate dihydroxyacetone-phosphate in the presence of NaBH4. Furthermore, the aldolase activity is not stimulated by monovalent or divalent cations. This enzyme exhibits an extreme stability to high temperature, acid and base. The purified enzyme is not activated after heating at 97 degrees C for 1.6 h. An incubation at 130 degrees C for 10 min is necessary to destroy irreversibly the activity of the aldolase. The optimal temperature for activity, however, is 37 degrees C. It is a monomer with a molecular weight of about 33,000 and exhibits a relatively broad pH optimum ranging over pH 7.5-9.0. Apart from fructose 1,6-bisphosphate as substrate (Km = 0.045 mM), this aldolase also revealed activity with fructose 1-phosphate (Km = 25 mM). The pH of the isoelectric point lies between 3.95 and 4.25.  相似文献   

19.
20.
The intrinsic fluorescence of homogeneous castor oil seed cytosolic fructose-1,6-bisphosphatase (FBPasec) was used as an indicator of conformational changes due to ligand binding. Binding of the substrate and the inhibitor fructose-2,6-bisphosphate (F-2,6-P2) was quantitatively compared to their respective kinetic effects on enzymatic activity. There are two distinct types of substrate interaction with FBPasec, corresponding to catalytic and inhibitory binding, respectively. Inhibitory substrate binding shares several characteristics with F-2,6-P2 binding which indicates that both ligands bind at the same site. However, F-2,6-P2 does not prevent fluorescence transitions attributed to catalytic substrate binding. The marked synergistic inhibition of FBPasec by AMP and F-2,6-P2 appears to arise via AMP's promotion of F-2,6-P2 binding. Based on the X-ray crystal structure of porcine kidney FBPase our modelling studies suggest the existence of a distinct F-1,6-P2/F-2,6-P2 inhibitory binding site which partially overlaps with the enzyme's catalytic site. We propose that a pronounced allosteric transition mediated by AMP binding increases access of F-1,6-P2 and F-2,6-P2 to this common inhibitory binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号