首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultra-high molecular weight polyethylene films prepared by melt flow crystallization under torsional flow conditions were characterized by wide angle (WAXS) and small angle (SAXS) diffraction techniques and scanning electron microscopy (SEM). The films had a fibrillar morphology in which lamellae having an average fold period of 650Å were stacked with their c-axis along the circular flow lines. X-ray analysis showed that the a and b-axes were preferentially oriented along the thickness and radial directions of the sample.  相似文献   

2.
Very thin films of poly(vinyl alcohol) could be prepared by utilizing the adsorption of polymer molecules at air/water interface from the aqueous solutions of the poly(vinyl alcohol) derived from vinyl trifluoroacetate. The films prepared by the bubble method were thinner than those obtained by the frame method. The minimum thickness of the former films was 260 Å and that of the latter was 1800 Å. These very thin films resisted water at temperatures below 55°C. The maximum Young's modulus of the drawn/annealed films prepared from these samples was 30 GPa. The permeability of water, JwP, was 2–6 × 10?3 cm · s?1 atm?1 (0–55°C) for the untreated film (thickness: 1800 Å) prepared by the frame method and 0.8–2.2 × 10?2cm · s?1 · atm?1 (5–55°C) for the untreated film (360 Å) prepared by the bubble method, and depended on the thickness of film.  相似文献   

3.
The development of multiaxially oriented films of low molecular weight (Mw ≈ 59,000) high density polyethylene with high mechanical properties in planer directions has been pursued by inducing fibrillar crystallization under curvilinear flow conditions in a contained geometry using an extrudomolding process and by simulating similar crystallization conditions in an optical plate–plate rheometer. The films, like the uniaxially drawn morphologies of the same low molecular weight high density polyethylene by solid-state extrusion, had a high modulus (12–20 GPa) and strength (0.25 GPa) along the residual flow lines but they exhibited also a modulus enhancement (5 GPa) in the transverse direction as a result of the orientation gradient of the molecular chains in the thickness directions.  相似文献   

4.
The deposition system described for sub-30 Å and thicker carbon (ta-C) overcoat that includes two RF ion beam guns and Filtered Cathodic Arc (FCA) module mounted on a single vacuum chamber. The system is capable of flattening the Thin Film Magnetic Heads (TFMH) surface by ion beam etching; smoothing scratches, trenches, steps on boundaries of different materials, and enhancing the adhesion by ion assisted ion beam sputtering. It provides the highly controllable deposition of carbon using an FCA module with Ar-assisted arc discharge. Low-level particulates are achieved on the deposited film surface (< 5/cm2 ). It was shown that crucial impact on filtering the particles with size < 1 μm has the electrostatic field distribution across the plasma guide that can be controlled by duct bias. Mechanical and electrical properties, optical and Raman spectra of ta-C films were investigated as a function of Ar flow in the arc discharge area. At Ar flow rates 0–12 sccm, stress of the films was varied in a range 2.9–7.5 GPa while hardness and Young's Modulus stayed in ranges of 45–60 GPa, and 230–300 GPa, respectively. Density of the obtained films was greater than 2.8 g/cm3. Optical absorption and electrical conductivity of ta-C films showed a significant rise while stress came down with Ar flow. Raman G-peak was higher for ta-C films with lower stress and shifted to lower energy. The low stress films versus high stress films showed a few orders reduced electrical resistance and anisotropy of specific resistance with respect to substrate plane: ρ  ρ. In situ ellipsometric control of growing film thickness was implemented on the system. Run-to-run standard deviation was less than 1 Å for 20–25 Å thick films. High corrosion resistance of FCA coatings was exhibited. The impact of Ar gas–carbon plasma interaction on the deposition conditions and microstructure of ta-C films was discussed.  相似文献   

5.
The blown films of high-density polyethylenes with unimodal and bimodal molecular weight distribution were prepared under several processing conditions, and their morphologies were extensively characterized. The high molecular weight tail (MW > ∼ 106) of the molecular weight distribution seems to play a critical role on the morphology of blown highdensity polyethylene films irrespective of the molecular weight distribution mode of the resins. As the content of high molecular weight species increased, the tendency for high stress-crystallization increased and the network structure of lamellar stacks was better developed. The intercrystalline connectivity along the normal direction of lamellar stacks was higher than that along the transverse direction of lamellar stacks. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Electrically conducting arachidic acid/polypyrrole (PPy) composite films were prepared by exposing the arachidic acid LB films containing ferric chloride to pyrrole vapor. The optimum conditions to deposit matrix LB film were the subphase temperature of 23–25°C, pH of 6.0 and ferric chloride concentration of 5.0 × 10−5 M. The formation of PPy in the arachidic acid matrix LB films was confirmed by UV-visible spectra, FTIR spectra, and scanning electron micrographs. The average thickness of the composite LB films prepared at 0°C was 1525 Å. The composite films prepared at lower temperatures have more uniform surface and exhibit higher electrical conductivity than the films prepared at higher temperatures do. The in-plain conductivity and the transverse conductivity of the composite film were 10−3−10−2 S/cm and 10−6S/cm, respectively, and, thus, the conductivity anisotropy was about 103 © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Mechanical properties and structure were studied for undrawn and zone-drawn films of LARC-CPI thermoplastic polyimide. The dynamic modulus of undrawn glassy material ranged from about 1.8 to 4.3 GPa, depending upon the degree of crystallinity. After zone drawing to draw ratio of 3.6–4.0, the dynamic glassy modulus was increased to a maximum of 9.5 GPa. The highest moduli were attained in samples that were multiply zone-drawn. The maximum-achievable draw ratio increased with the maximum drawing temperature, but the semicrystalline nature of the starting material limited the ultimate drawability. For the first time, highly oriented crystalline films were obtained for X-ray diffraction and preliminary crystal structure analysis. The crystal lattice was fit to the orthorhombic crystal system, and the results indicate that the lattice parameters are a = 8.0 ± 0.2 Å, b = 5.9 ± 0.2 Å, and c = 36.5 ± 0.3 Å. The value of the c-axis lattice parameter is very close to the fully extended chain length of the monomer repeat unit. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Extremely high modulus (up to 1011Nm?2) strands of poly ethylene have been prepared by the controlled crystallization of lamellar overgrowths onto a small quantity of preformed flow-induced microfibrils. The requirements for achieving a high modulus from a lamellar system are considered, and indicate that high chain extensions may not be needed. The lamellae satisfying these requirements possess a unique taper, the outer edges having a fold length of less than 40Å. This raises new issues relating to crystallization in confined spaces, and space filling by lamellae in bulk samples in general.  相似文献   

9.
Polypropylene (PP) films have been prepared through two different cast extrusion processes: one using a machine direction orientation (MDO) unit and the other stretching the films at the die under high cooling conditions (lab unit). Films for two PP resins different in molecular structure have been prepared using both processing techniques. The effect of the resin structure and the processing conditions on the film properties has been examined. It was found that the MDO unit generated a highly oriented fibrillar crystalline structure with a distribution of elongated thick fibrils while extrusion under high cooling conditions generated an oriented row nucleated lamellar structure. The films showed distinctive tensile responses in stretching, with a strong solid‐elastic response for the oriented MDO films and a steady strain hardening after yielding for the sample obtained from lab unit cast extrusion. It was found that the strength in the transverse direction (TD) was particularly very low for the oriented MDO films made of the bimodal PP. The oxygen permeability was reduced with increasing draw ratio (DR) for the MDO films. The haze property for the MDO samples reduced to a plateau for DR up to 5 while clarity improved continuously with DR.  相似文献   

10.
Polymer films produced by tubular film blowing have a unique morphology that results from the large elongational flow in melt draw down and biaxial orientation due to bubble blow-up. Three high density polyethylene (HDPE) blown films were produced under similar processing conditions from resins which varied principally in molecular weight (MW) and molecular weight distribution (MWD). Scanning electron microscopy (SEM) showed that the lower MW and narrower MWD resin produced film which had a uniaxial orientation of stacked lamellar crystals. The higher MW (HMW) and broad MWD resins produced films consisting of a network of nearly orthotropically oriented lamellar stacks. Greater high molecular weight fraction (MW > 106) in the resin resulted in more random orientation. The influence of these different structures on properties was studied by examining the plastic zone formation at crack tips and uniaxial tensile deformation with the SEM and comparing them to the macroscopic stress-strain behavior. A continuous deformation of the network structure was observed in the HMW films. Lamellar deformation occurred primarily in regions of stacks oriented parallel to the tensile axis. Macroscopic yield occurred at 6 to 10 percent strain via a shearing and opening the lamellar crystals. Irreversible deformation occurred from ?50 to 400 percent strain by transformation of the oriented lamellae to microfibrils. Eventually all the lamellar stacks in the network become aligned with the tensile axis. This process was found to improve the tear resistance in the crack propagation experiments. The lamellar stacks in the network orient perpendicular to the crack independent of crack propagation direction, insuring a more uniform transmission of stress and preventing local yielding. The tensile modulus, yield stress, and ultimate strength were highest in the film containing more high molecular weight polymer.  相似文献   

11.
During extrusion the main deformation and orientation of macromolecules is achieved by the flow component with longitudinal gradient. The orientation increases drastically if some solidification occurs during flow, yielding row-nucleated cylindrites and even fully oriented hard elastomers. In all cases the basic elements are stacks of very thin (~100Å) folded-chain lamellae connected by very few tie molecules. The plastic deformation of the solid transforms the original lamellar material into the extremely well oriented fibrous structure with high anisotropy of physical properties. The basic element are the highly aligned, very long and thin microfibrils bundled into fibrils. The axial strength of microfibrils is caused by the great many taut tie molecules connecting as almost crystalline bridges the crystalline blocks across the interposed amorphous layers. In plastic deformation of fibrous material the fibrils are sheared and longitudinally displaced. The latter mode is responsible for almost all the observed elongation. It smooths the structural defects on the surface of fibrils caused by the ends of microfibrils and thus produces a better lateral fit of fibrils resulting in rapidly increasing resistance to plastic deformation. The former mode extends the interfibrillar tie molecules and hence drastically increases their fraction per amorphous layer.  相似文献   

12.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) were processed into biaxially drawn films, and samples taken from the bi‐oriented films were then investigated by dynamic rheology experiments in the melt state. Storage modulus G′ and loss modulus G″ were determined in the frequency range of 10?2–102 rad/s at temperatures between 260 and 300°C. Although the time–temperature superposition (TTS) principle was found to hold in the high frequency regime, a breakdown of TTS was observed at low frequencies, and the terminal behavior of the storage modulus G′ of the blends departs drastically from the terminal behavior observed for the blend components. This is caused by interfacial surface tension effects. The results indicate that despite the effect of transesterification reactions, the PET/PEN blend systems investigated consist of a microseparate phase of PEN platelets in a matrix of PET. This morphology is produced when the blends are processed into biaxially oriented PET/PEN films, and droplets of PEN are deformed into a lamellar structure consisting of parallel and extended, separate layers. The large interfacial surface area of the bi‐oriented PET/PEN blends leads to remarkably strong interfacial tension effects in dynamic rheology measurements. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
《Ceramics International》2015,41(6):7519-7528
Silicon carbide nanopowder was coated with amorphous alumina by atomic layer deposition (ALD), using trimethylaluminium Al(CH3)3 (TMA) and water as precursors. The ALD experiments were carried out at 300 °C, using variable cycle count or changing pulse times at constant cycle count. Depending on deposition conditions, hardness averaging at 14.8 GPa and corresponding reduced elastic modulus of 114 GPa were measured. Maximum hardness values and reduced moduli of elasticity reached 25–30 and 134–202 GPa, respectively, improving the mechanical properties of composites. Increased precursor flow had positive effect on mechanical properties – maximum values of hardness and elastic module reached 35–45 and 218–261 GPa, respectively. In the composites, the mechanical properties were improved compared to pure alumina films or silicon carbide and the brittleness characteristic of SiC particle tablets was decreased.  相似文献   

14.
Nanocrystalline diamond (NCD) thin films have been grown by microwave plasma chemical vapor deposition (MPCVD) and investigated to determine their suitability for biomedical applications. Growth conditions were chosen to produce very uniform films over the surface of curved temporomandibular joint implants. These parameters include methane flow rates exceeding 20% of the hydrogen gas flow rate, and chamber pressure and microwave power were maintained at 30 Torr and 0.73 kW, respectively, in a Wavemat 6 kW MPCVD device. Films (3 μm thick) that completely coated 2.54-cm-diameter Ti–6Al–4V disks under these conditions exhibit mean grain size of 30.4 nm as determined by XRD peak broadening, hardness of 80 GPa as determined by nanoindentation, RMS mean roughness of 15.3±5.3 nm as determined by stylus profilometry, and film adhesion toughness (ΓC) of 158 J/m2 as determined by a Rockwell indentation method. Similar deposition performed on small Ti–6Al–4V hemispheres produce films with smaller mean grain size of 21.1 nm and correspondingly lower hardness and roughness. Overall, these films exhibit properties well suited for use in biomedical applications.  相似文献   

15.
This study was devoted to the effect of extensional flow during film extrusion on the formation of the β‐crystalline phase and on the piezoelectric properties of the extruded poly(vinylidine fluoride) (PVDF) films after cold drawing. The PVDF films were extruded at different draw ratios with two different dies, a conventional slit die and a two‐channel die, of which the latter was capable of applying high extensional flow to the PVDF melt. The PVDF films prepared with the two‐channel die were drawn at different temperatures, strain rates, and strains. The optimum stretching conditions for the achievement of the maximum β‐phase content were determined as follows: temperature = 90°C, strain = 500%, and strain rate = 0.083 s?1. The samples prepared from the dies were then drawn under optimum stretching conditions, and their β‐phase content and piezoelectric strain coefficient (d33) values were compared at equal draw ratios. Measured by the Fourier transform infrared technique, a maximum of 82% β‐phase content was obtained for the samples prepared with the two‐channel die, which was 7% higher than that of the samples prepared by the slit die. The d33 value of the two‐channel die was 35 pC/N, which was also 5 pC/N higher than that of the samples prepared with the slit die. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Ultrahigh molecular weight polyethylene (UHMWPE) gel films were prepared by gelation crystallization from decalin solutions. According to wide- and small-angle X-ray scattering (WAXD and SAXS) studies, single crystal mat texture with crystal c-axis oriented normal to film surface generally develops. However, randomly oriented structure can also develop if an external force is applied to gel films during gelation crystallization. Both textures invariably yield high drawability in uniaxial mode with outstanding modulus and strength. Biaxial films, typically 5 × 5, 6 × 6, 8 × 8, and 10 × 10 times the original dimensions, were prepared at 130°C–135°C in a biaxial stretcher. Optical microscopic Investigations reveal the development of interwoven fibrillar structure in all specimens. WAXD and SAXS studies show that lamellar structure transforms to fibrillar texture during biaxial stretching. Crystal orientation is characterized by WAXD pole figure and infrared dichroic methods. Mechanical studies suggest that tensile modulus and strength appear uniform. In comparison with uniaxial deformation, significant improvement in the lateral strength is seen in the biaxially stretched films.  相似文献   

17.
Films of pure and high-impact atactic polystyrene were prepared by the recently developed technique of solid-state coextrusion. The films were produced at extrusion rates ≥4 cm/min at 126°C with a maximum extrusion draw ratio (EDR) of 11.6. These ultradrawn films are fibrous, have a high birefringence of ?2.24 × 10?2, and exhibit a 72% elastic recovery. The material has a tensile modulus of ~4–5 GPa and a tensile strength to break of 85 MPa. Thermal analysis suggests a constant Tg.  相似文献   

18.
A polyfluorinated aromatic diamine, 3,3′, 5,5′‐tetrafluoro‐4,4′‐diaminodiphenylmethane (TFDAM), was synthesized and characterized. A series of polyimides, PI‐1–PI‐4, were prepared by reacting the diamine with four aromatic dianhydrides via a one‐step high‐temperature polycondensation procedure. The obtained polyimide resin had moderate inherent viscosity (0.56–0.68 dL/g) and excellent solubility in common organic solvents. The polyimide films exhibited good thermal stability, with an initial thermal decomposition temperature of 555°C–621°C, a 10% weight loss temperature of 560°C–636°C, and a glass‐transition temperature of 280°C–326°C. Flexible and tough polyimide films showed good tensile properties, with tensile strength of 121–138 MPa, elongation at break of 9%–12%, and tensile modulus of 2.2–2.9 GPa. The polyimide films were good dielectric materials, and surface and volume resistance were on the order of a magnitude of 1014 and 1015 Ω cm, respectively. The dielectric constant of the films was below 3.0 at 1 MHz. The polyfluorinated films showed good transparency in the visible‐light region, with a cutoff wavelength as low as 302 nm and transmittance higher than 70% at 450 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1442–1449, 2007  相似文献   

19.
《Diamond and Related Materials》2001,10(9-10):1855-1861
Diamond-like carbon (DLC) films were prepared on AISI 440C steel substrates at room temperature by the electron cyclotron resonance chemical vapor deposition (ECR-CVD) process in C2H2/Ar plasma under different conditions. In order to prevent the inter-diffusion of carbon and improve the adhesion strength of DLC films, functionally gradient Ti/TiN/TiCN/TiC supporting underlayers were deposited on the steel substrates in advance. Using the designed interfacial transition layers, relatively thick DLC films (1–2 μm) were successfully prepared on the steel substrates without delamination. By optimizing the deposition parameters, DLC films with hardness up to 28 GPa and friction coefficients lower than 0.15 against the 100Cr6 steel ball were obtained. In addition, the specific wear rates of the films were found to be extremely low (∼10−17 m3/Nm). The friction-induced graphitization mechanism of DLC was confirmed by micro-Raman analysis.  相似文献   

20.
High‐strength and porous ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers have been prepared through a two‐stage drawing process. Combined with tensile testing, scanning electron microscopy, and small‐angle X‐ray scattering, the mechanical properties, porosity, and microstructural evolution of the UHMWPE fibers were investigated. The first‐stage cold drawing of the gel‐spun fibers and subsequent extraction process produced fibers with oriented lamellae stacks on the surface and plentiful voids inside but with poor mechanical properties. The second‐stage hot drawing of the extracted fibers significantly improved the mechanical properties of the porous fibers because of the formation of lamellar backbone networks on the surface and microfibrillar networks interwoven inside to support the voids. With various processing conditions, the optimized mechanical properties and porosity of the prepared UHMWPE fibers were obtained a tensile strength of 1.31 GPa, a modulus of 10.1 GPa, and a porosity of 35%. In addition, a molecular schematic diagram is proposed to describe structural development under two‐stage drawing, including void formation and lamellar evolution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42823.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号