首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high velocity spouting regime of a deep bed containing 9.6 mm hollow polyethylene spheres of density 394 kg/m3 was investigated in a 152.4 mm flat bottom cylindrical half column with a 50.8 mm inlet. A bed height vs gas velocity regime diagram is presented showing the conditions under which type II spouting is observed. The transition velocity from bubbling to type II spouting is determined using the autocorrelation of the pressure fluctuations in the bed. The bubbling characteristics of the bed are described. Bed expansion in bubbling and type II spouted beds are reported.  相似文献   

2.
粗颗粒在锥型床中的流化特性   总被引:3,自引:5,他引:3  
通过Geldart-D类粗颗粒在三种锥形床中的实验表明:随着入口的表观气速的增加,在床中依次出现固定床流区,部分流化区和喷动流区。在固定床区内,压降和表观气速关系可以通过Ergun公式求得:在部分流化床区内;实验和理论计算均表明了由于颗粒所受到的曳力档的轴向高度增加而减小,造成床层轴向上部未流化的颗粒对下部硫化颗粒膨和压制作用,在喷动流化区内,给出了预测锥形床的初始喷动气速和喷动压降的经验公式。  相似文献   

3.
《Powder Technology》1987,52(2):131-137
Data obtained in a rectangular slot spouted bed for two different grains (wheat and oats) have been analyzed to determine the minimum spouting velocity (Vms) and the minimum spouting pressure drop (ΔPms) as a function of the bed height.Three different aerodynamic regimes occur as the bed height is increased.The results are compared with the literature models for the conventional (conical-cylindrical) spouted bed.For shallow beds, the experimental minimum spouting velocity and minimum spouting pressure drop can be well represented by the Littman et al.'s two-dimensional model.  相似文献   

4.
Minimum spouting velocities in conical spouted beds have been obtained from pressure drops versus the superficial gas velocity curves, based on both increasing and decreasing the superficial gas velocity. It has been shown that the minimum spouting velocity from decreasing the superficial gas velocity is lower than from increasing the superficial gas velocity in most cases. This phenomenon is similar to that in conventional spouted beds and different from the early works. The experimental results also showed that there isn't significant difference in the pressure drop and Ums under identical operating conditions between semi‐circular and circular conical spouted beds, and the same Ums can be obtained from absolute pressure drops at any position above the gas inlet. The Ums is found to increase with increasing the cone angle and static bed height, as well as the gas inlet diameter to a less extent.  相似文献   

5.
Quantitative method is used to experimentally measure the minimum spouting velocity in shallow conical spouted bed. And a new minimum spouting correlation for shallow conical spouted beds is developed. It is based on spherical ZrO2 particles whose density is as high as 5890 kg/m3 while the other Ums correlations published so far are mainly based on relatively deep conical beds composed of lower density particles with density around or lower than 3000 kg/m3. The new Ums correlation can predict Ums of heavy particles well within the range of the experimental matrix. © 2011 Canadian Society for Chemical Engineering  相似文献   

6.
Spouting behaviors of cylindroid and spherical particles in a spouted bed are experimentally investigated. The characteristics of flow pattern and pressure drop of the binary mixtures are figured out and three kinds of cylindroid particles with different sizes and shapes are involved in experiments to discuss effects of particle size and shape on the spouting behaviors in beds. The emphasis is laid on the influence of the volume fraction of cylindroid particles, Xc, on the spouting phenomena, including the total pressure drop, the minimum spouting velocity, and fountain height. Results show that, the shapes and sizes of cylindroid particles, mainly including equivolume diameter and aspect ratio, significantly affect the spouting behaviors. There is a maximum volume fraction, Xc,max, for each kind of cylinders to maintain the stable fountain at a certain gas velocity. With the same gas velocity, Xc,max is lower for the cylinders with higher aspect ratio. © 2014 American Institute of Chemical Engineers AIChE J, 61: 58–67, 2015  相似文献   

7.
In order to properly design and scale up spouted beds, one needs to predict the minimum spouting velocity of specific systems having different bed dimensions, and properties of particle and spouting gas. Because of inherent complexity of predicting minimum spouting velocity, the prevailing approach has been to use empirical correlations, a number of which are available in the literature. Central jet distributors are commonly used in the experimental studies reported in the literature. Circular slit distributor is a new concept in which air is supplied to the bed of particles through a circular slit. This paper presents results of an experimental study on the hydrodynamics of central jet and circular slit distributors. In this paper a fully connected feed-forward neural network model was used to predict the minimum spouting velocity of central jet and circular slit spouted beds. A neural network model was also developed to predict minimum fluidization velocity. The actual experimental data obtained from published literature and from the experiments carried out in this study were used for training and validating the models. The minimum spouting and fluidization velocities predicted using the neural network models developed in this study show a better approximation to the actual experimental values than those obtained from correlations available in the open literature. The position of flow regime of circular slit spouted bed was also established relative to the flow regimes of central jet spouted bed and fluidized bed.  相似文献   

8.
A new general correlation is presented for the minimum spouting velocity based on the annular pressure gradient at the top of the bed at minimum spouting. The correlation fits a wide range of experimental data to 11.6% on average. The normalized minimum spouting velocity ratio. umS/umF, is shown to be a function of three dimensionless parameters.  相似文献   

9.
In this paper the concept of micro-fluidized beds is introduced. A cylindrical quartz reactor with an internal diameter of only 1 mm is used for process conditions up to and 244 bar. In this way, fast, safe, and inherently cheap experimentation is provided. The process that prompted the present work on miniaturization is gasification of biomass and waste streams in hot compressed water (SCWG). Therefore, water is used as fluidizing agent. Properties of the micro-fluid bed such as the minimum fluidization velocity (Umf), the minimum bubbling velocity (Umb), bed expansion, and identification of the fluidization regime are investigated by visual inspection. It is shown that the micro-fluid bed requires a minimum of twelve particles per reactor diameter in order to mimic homogeneous fluidization at large scale. It is not possible to create bubbling fluidization in the cylindrical micro-fluid beds used. Instead, slugging fluidization is observed for aggregative conditions. Conical shaped micro-reactors are proposed for improved simulation of the bubbling regime. Measured values of Umf and Umb are compared with predictions of dedicated 2D and 3D discrete particle models (DPM) and (semi)-empirical relations. The agreement between the measurements and the model predictions is good and the model supports the concept and development of micro-fluid beds.  相似文献   

10.
The effect of chaotic temperature fluctuations on the immersed heater‐to‐bed heat transfer coefficient (h) are investigated in a liquid‐liquid‐solid fluidized bed (0.152 m ID × 2.5 m in height). The time series of temperature fluctuations are measured and analyzed by means of the multidimensional phase space portraits and Kolmogorov entropy (K), in order to characterize the chaotic behavior of heat transfer coefficient fluctuations in the bed. The overall heat transfer coefficient is inversely proportional to the Kolmogorov entropy of temperature fluctuations, as well as the fluctuation range of heat transfer coefficient (Δhi). The Kolmogorov entropy and fluctuation range of the heat transfer coefficient (Δhi) increase with increasing dispersed phase velocity, but decrease with increasing particle size. However, they attain their minima with variation of the continuous phase velocity as well as the bed porosity, at which point the flow regime of particles in the beds changes. The overall heat transfer coefficient is directly correlated with the Kolmogorov entropy, as well as the fluctuation range of heat transfer coefficient.  相似文献   

11.
Spouting of 3.7 mm polyvinyl chloride particles in a cone‐based cylindrical column is subjected to entrainment of FCC powder in the spouting air. It is found that the powder entrainment reduces the minimum spouting velocity, increases the bed pressure drop and reduces the maximum spoutable bed height. At any given bed height and value of U/Ums, there is a critical value of powder loading ratio above which spouting gives way to slugging.  相似文献   

12.
A cylindrical gas-liquid-solid spouted bed, driven exclusively by gas flow, has been developed with a high potential for use in biochemical processes, such as a biological wastewater treatment. A plexiglass column with a 152 mm inner diameter was used in combination with a 53 mm inner diameter plexiglass draft tube. Three particle types were studied with densities ranging from 1044 kg/m3-1485 kg/m3 and average particle sizes ranging from 0.7-2.5 mm. Four flow regimes were observed when increasing the gas velocity, including fixed bed, semispouted bed, full spouted bed, and internal circulating fluidized bed. The transition gas velocities between those regimes were experimentally measured and termed as minimum spouting velocity, full spouting velocity, and minimum circulating velocity, respectively. A measurement of the downward particle flux in the annulus was used to identify the minimum spouting velocity, while the particle velocity and dense phase retraction in the annulus were monitored for the full spouting and minimum circulating velocities. All regime transition velocities increased with more dense particles and longer draft tubes. The minimum spouting velocity and full spouting velocity were not affected when varying the nozzle-tube gap, while the minimum circulating velocity increased with longer nozzle-tube gaps. Experiments without a draft tube were carried, though the spouting stability was significantly reduced without the draft tube.  相似文献   

13.
The similarity and difference between the flat‐bottom and cone‐bottom cylindrical spouted beds, conical spouted beds and vertical upward jets in fluidized beds have been analyzed in this paper based on the effects of geometrical parameters on the minimum spouting velocity and operating stabilities of the spouted beds. The effect of angle on minimum spouting velocity was found to be only significant within the range of 30 to 60 degrees cone angles. Minimum spouting velocity in deep cylindrical spouted beds was proportional to the square root of the static bed height, but was proportional to the static bed height in conical spouted beds and large cylindrical spouted beds with small height‐to‐diameter ratio. The relationship between the minimum spouting velocity and the static bed height was consistent with that between jet velocity and the vertical jet penetration length in jetting fluidized beds.  相似文献   

14.
Bed expansion of fine powders was investigated in two high aspect ratio fluid beds, an expanded top bed and a circulating system. The range of gas velocities (0.07 – 8 m/s) spanned the bubbling/slugging, turbulent, fast, and dense conveying fluidization regimes. The two-phase theory was shown generally not to apply in the slugging and the higher velocity fluidization regimes. A modified Richardson-Zaki approach, using an ‘effective’ cluster terminal velocity, was shown to adequately describe bed expansion. Changes in slope of the expansion curve were associated with regime changes, and can prove useful for the analysis of large diameter fluid beds. The effect of particle size distribution was shown to be considerable.  相似文献   

15.
Industry relies on fluidized beds to synthesize chemicals (acrylonitrile, maleic anhydride, titanium dioxide, vinyl chloride), combust coal, dry powders, and treat waste. Fluidized bed folklore declares that they are hard to scale‐up and the gas phase is backmixed. Commercial failures that disregard standard design criteria around powder management, gas/solids injection, and mixing reinforce this belief. However, engineers select fluidized beds for processes that are impractical with conventional technologies to achieve economies of scale for highly exothermic, endothermic, or explosive reactions, for catalysts that deactivate in seconds (or minutes), and for chemistry that requires multiple dosing cycles. Failures are more frequent for these challenging applications. For this reason, researchers study reaction kinetics in fixed beds despite internal mass transfer limitations and axial and radial temperature and concentration gradients. Fluidized bed hydrodynamics vary with powder properties (particle diameter, size distribution, density, sphericity), operating conditions (gas density, viscosity, temperature, pressure), reactor geometry (diameter, height, mass, grid geometry). The minimum fluidization velocity (Umf) is a property that identifies the transition from the fixed bed regime to the fluidized bed regime and equals the gas velocity at which the upward drag force equals the weight of the powder. At the experimental scale, fluidized beds operate isothermally, solids are completely backmixed, and the gas phase is close to plug flow (). Here, we describe the relationship between powder properties and fluidization quality, list experimental techniques, describe recent applications, and gas phase hydrodynamics and uncertainties.  相似文献   

16.
The volumetric liquid‐phase mass transfer coefficient, kLa, was determined by absorption of oxygen in air using six different carboxy‐methyl cellulose (CMC) solutions with different rheological values in three phase spout‐fluid beds operated continuously with respect to both gas and liquid. Three cylindrical columns of 7.4 cm, 11.4 cm, and 14.4 cm diameters were used. Gas velocity was varied between 0.00154–0.00563 m/s, liquid velocity between 0.0116–0.0387 m/s, surface tension between 0.00416–0.0189 N/m, static bed height between 6.0–10.8 cm, and spherical glass particles of 1.75 mm diameter were used as packing material. A single nozzle sparger of 1.0 cm diameter was used in the spouting line. The volumetric mass transfer coefficient was found to increase with gas velocity, liquid velocity, and static bed height and to decrease with the increase of the effective liquid viscosity of the CMC solution. A dimensionless correlation was developed and compared with those listed in the literature.  相似文献   

17.
Differential pressure fluctuation measurements were conducted in a gas spouted bed of 120 mm in diameter at different axial and radial positions. Hurst's rescaled range analysis of the differential pressure fluctuation signals was successfully employed to recognize different flow regimes, i.e. packed bed, stable spouting and unstable spouting, and characterize their transitions. Obvious two‐phase behaviour, as suggested by two Hurst exponents, was observed in the stable spouting regime. It had also been found that the spouting behaviour in deeper spouted beds was significantly different from that in shallow spouted beds. The influences of measurement location and bed height on the Hurst exponents were discussed.  相似文献   

18.
Spouted beds are a very interesting class of gas–solid contactors that possess excellent heat transfer and mixing characteristics, while they are particularly suited to process coarse particles. Proper design of such beds requires the prediction of various hydrodynamic characteristics, such as the minimum spouting velocity and maximum spoutable height. Contrary to their typical initial applications, spouted beds have been finding recently more frequent use on the one hand at endothermic processes and on the other hand using much finer particle sizes. In the current work, the hydrodynamic characteristics of a laboratory scale spouted bed of 0.05 m diameter have been investigated via cold flow studies using olivine particles of 3.55–5.00 × 10−4 m size. Hydrodynamic parameters have been measured at this compact geometry and fine particle size and were compared with common literature correlations. An empirical correlation was derived to predict the fountain height for the studied fine particle spouted bed. Computer simulations have been further used to investigate the heat transfer characteristics of the bed under endothermic reactive conditions, using methane reforming as a case study. Given sufficient external heat supply, a spouted bed operating at a well-mixed regime can efficiently drive even highly endothermic reactions.  相似文献   

19.
Bed expansion occurs during the operation of gas‐fluidized beds and is influenced by particle properties, gas properties and distributor characteristics. It has a significant bearing on heat and mass transfer phenomena within the bed. A method of predicting bed expansion behavior from other fluidizing parameters would be a useful tool in the design process, dispensing with the need for small‐scale trials. This study builds on previous work on fluidized beds with vertical inserts to produce a correlation that links a modified particle terminal velocity, minimum fluidizing velocity and distributor characteristics with bed voidage in the relationship with P as the pitch between holes in the perforated distributor plate.  相似文献   

20.
Hydrodynamic properties in turbulent fluidized beds of three different sizes of coal (d p = 0.507, 0.987, 1.147 mm) have been determined from the pressure fluctuations in a 0.1 m-ID × 3.0 m high Plexiglas column. The transition velocity from the slugging to turbulent flow regimes can be determined from the statistical analysis of pressure fluctuations such as mean amplitude, standard deviation and skewness, the pressure wave velocity, and the bed expansion with gas velocity. The bed expansion in the slugging and turbulent flow regimes cannot be estimated from the two-phase theory. The voids rise velocity and the bed expansion ratio (H/H mf ) in the turbulent flow regime have been correlated with the relevant dimensionless and operating parameters The ransition velocity to the turbulent flow regime has been determined based on the slug breakdown caused by the inertial force of an upflowing maximum stable slug which overcomes the gravitational force induced by solid refluxing as:   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号