首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The influence of temperatures and flow rates on the rheological behavior during extrusion of acrylonitrile–butadiene–styrene (ABS) terpolymer melt was investigated by using a Rosand capillary rheometer. It was found that the wall shear stress (τw) increased nonlinearly with increasing apparent shear rates and the slope of the curves changed suddenly at a shear rate of about 103 s?1, whereas the melt‐shear viscosity decreased quickly at a τw of about 200 kPa. When the temperature was fixed, the entry‐pressure drop and extensional stress increased nonlinearly with increasing τw, whereas it decreased with a rise of temperature at a constant level of τw. The relationship between the melt‐shear viscosity and temperature was consistent with an Arrhenius expression. The results showed that the effects of extrusion operation conditions on the rheological behavior of the ABS resin melt were significant and were attributable to the change of morphology of the rubber phase over a wide range of shear rates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 606–611, 2002  相似文献   

2.
Our laboratory recently published several analytical equations that can be used to predict the melting rate of fully compacted solid polymers sliding on a heated metal surface, modeling the melting mechanism inside an extruder. These equations were obtained by seeking asymptotic solutions to the differential equations describing the melting mechanism, temperature, and shear-dependent viscosity of polymer melts. Following the same asymptotic approach, we successfully developed accompanying analytical equations for predicting the stress required to slide fully compacted solid polymers on a heated metal surface. The accuracy of these analytical stress equations was found to be reasonable, although not fully satisfactory, by comparing their predictions to the experimentally measured values. The accuracy of the stress calculation is directly related to the accuracy of the viscosity values at high shear rates. The consideration of the temperature and shear dependencies of melt viscosity is most important for accurate prediction of the stress, just as it is for the melting rate. The stress not only depends on the melt rheological properties of the polymer but also on the thermodynamic properties.  相似文献   

3.
The melt flow properties during capillary extrusion of nanometre‐calcium‐carbonate‐filled acrylonitrile–butadiene–styrene (ABS) copolymer composites were measured by using a Rosand rheometer to identify the effects of the filler content and operation conditions on the rheological behaviour of the sample melts. The experiments were conducted under the following test conditions: temperature varied from 220 to 240 °C and shear rate ranged from 10 to 104 s?1. The filler volume fractions were 0, 10, 20, 30, 40 and 50%. The results showed that the shear flow did not strictly obey the power law under the test conditions, and that the entry pressure drop (ΔPen) and the extension stress (σe) in entry flow increased nonlinearly, while the melt shear viscosity (ηs) and extension viscosity (ηe) decreased with increasing the wall shear stress (τw) at constant test temperature. The dependence of the melt shear viscosity on the test temperature was approximately consistent with the Arrhenius expression at fixed τw. When τw was constant, ηs and ηe increased while ΔPen and σe decreased with the addition of the filler volume fraction. © 2002 Society of Chemical Industry  相似文献   

4.
In order to predict the processing behavior of a high density polyethylene resin one must know the resin flow behavior over a wide range of shear rates. Low shear properties are important in applications where melt strength, sagging, etc. are critical. On the other hand, high shear flow properties are a determining factor in applications where melt instability, melt fracture and heat generation are important. The flow behavior of a resin can be established by measuring the zero shear viscosity, η0, the maximum relaxation time, τ0, and the shape of the flow curve. We have measured these basic rheological parameters on a large number of high density polyethylene resins. A shear sensitivity parameter which is independent of molecular weight was derived from a correlation between η0 and τ0. This parameter, together with η0, provide the vital information needed in order to predict the processing behavior of the resin. This method is applicable to other polymer systems provided that the rheological parameters η0 and τ0 can be experimentally obtained.  相似文献   

5.
The effect of matrix polymer and filler content on the rheological behavior of hydroxyapatite‐filled injection molding grade high‐density polyethylene (HDPE) has been studied. Studies of the flow curves revealed that the matrix and the composite exhibit three distinct regions in the flow curve, namely, a pseudoplastic region at low to moderate shear rates, a plateau and a second pseudoplastic region at high shear rates. The shear stress corresponding to the plateau (τc) is dependent on both the filler concentration and the melt temperature. Addition of HA in the HDPE matrix increases the value of τc and decreases compressibility of the melt. An increase in temperature also raises the value of τc. From the nature of flow curves it is concluded that the matrix polymer largely decides the rheology of the composite.  相似文献   

6.
Poly(3‐hydroxybutyrate) (PHB) and poly(l ‐lactic acid) (PLLA) were individually cross‐linked with dicumyl peroxide (DCP) (0.25–1 wt %) by reactive melt processing. The cross‐linked structures of the polymer gel were investigated by nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies. The size of the polymer crystal spherulites, glass transition temperature (Tg), melting transition temperature (Tm), and crystallinity were all decreased as a result of cross‐linking. Cross‐linking density (νe) was shown to increase with DCP concentration. Based on parallel plate rheological study (dynamic and steady shear), elastic and viscous modulus (G″ and G′), complex viscosity (η*) and steady shear viscosity (η) were all shown to increase with cross‐linking. Cross‐linked PHB and PLLA showed broader molar mass distribution and formation of long chain branching (LCB) as estimated by RheoMWD. Improvements in melt strength offer bioplastic processors improved material properties and processing options, such as foaming and thermoforming, for new applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41724.  相似文献   

7.
This article presents study of melt rheological properties of composites of polypropylene (i-PP) filled with wood flour (WF), at filler concentrations of 3–20 wt%. Results illustrate the effects of (i) filler concentration and (ii) shear stress or shear rates on melt viscosity and melt elasticity properties of the composites. Incorporation of WF into i-PP results in an increase of its melt viscosity and a decrease of melt elasticity such as die swell and first normal stress differences; these properties, however, depend on filler concentration. Processing temperature of the filled i-PP increases as compared to the nonfilled polymer.  相似文献   

8.
A pulse pressure was superimposed on the melt flow in extrusion, called vibration extrusion. A die (L/D = 17.5) was attached to this device to study the rheological properties of an amorphous polymer (ABS) and semicrystalline polymer (PP, HDPE), prepared in the vibration field, and the conventional extrusion were studied for comparison. Results show that the melt vibration technique is an effective processing tool for improving the polymer melt flow behavior for both crystalline and amorphous polymers. The enhanced melt rheological property is also explained in terms of shear thinning criteria. Increasing with vibration frequency, extruded at constant vibration pressure amplitude, the viscosity decreases sharply, and so does when increasing vibration pressure amplitude at a constant vibrational frequency. The effect of vibrational field on melt rheological behavior depends greatly on the melt temperature, and the great decrease in viscosity is obtained at low temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5292–5296, 2006  相似文献   

9.
The steady shear viscosity (ηs), the steady first normal stress coefficient (Ψ1), the steady second normal stress coefficient (Ψ2), and extensional viscosity (ηe) are four important parameters for polymer melts during polymer processing. In this article, we propose a stress and rate-dependent function to describe creation and destruction of polymer junctions. Moreover, we also introduce a movement expression to describe nonaffine movement of network junctions. Based on network theory, a nonaffine single-mode rheological model is presented for the steady flow of polymeric melts, and the equations of ηs, Ψ1, Ψ2, and ηe are derived from the model accordingly. Furthermore the dependences of ηs and ηe on model parameters are discussed for the model. Without a complex statistical simulation, the single-mode model with four parameters yields good quantitative predictions of the steady shear and extensional flows for two low density polyethylene melts reported from previous literature in very wide range of deformation rates. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Rheological and electrical properties were studied on blends of a PETG polyester (cyclohexanedimethanol-modified polyethylene terephthalate) and an inherently static dissipative high molecular weight polyether based copolymer, hereafter referred to as ESD polymer. Several important electrical properties and flow phenomena have been observed. First of all, the PETG blends could result in ESD protected material with excellent performance and a minimal effect on physical properties and melt processability. The rheological characterization reveals that the ESD polymer has a high melt viscosity even at a temperature more than 150 degrees above its melting temperature and that it exhibits pseudoplastic behavior. The PETG melt shows a near constant dynamic viscosity at a low frequency region. The viscosity of the ESD polymer and PETG melt exhibits a cross over at the temperature range from 200–220°C; the PETG melt is the lower viscosity component at low shear rate and the ESD polymer is the lower viscosity component at high shear rate. This appears to result in the existence of a small composition difference in the thickness direction of an injection-molded ESD polymer/PETG part, with a greater fraction of the ESD polymer component in the skin section. This, in turn, could enhance the surface conductivity of the skin region of an injection-molded part. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Studies have been made on the melt rheological properties of poly(vinyl chloride) (PVC) with copolymers of methyl methacrylate (MMA) and methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), and 2-ethyl hexyl acrylate (EHA) at a blending ratio of 80:20. Effect of blend composition on shear stress–shear rate, melt viscosity, melt elasticity, and extrudate distortion have been studied. A significant decrease in the melt viscosity is observed on incorporation of low Tg, acrylate copolymers such as those with BA and EHA, thereby reducing the processing temperature. First normal stress and die swell ratio also decreases with an increase in the side chains of acrylate copolymer. PVC blended with P(MMA-co-BA) and P(MMA-co-EHA) is sensitive to both temperature and shear stress.  相似文献   

12.
A new method was developed to evaluate rheological properties of polymer melts such as shear stress, shear rate, apparent viscosity and other rheological parameters in internal mixers. It is based on the classical power law model where the power law index n is directly evaluated from a set of data containing speed S, torque M, and the consistency index m is indirectly determined by an empirical relation. The method is based on a model with only one geometrical parameter (α), which involves a chamber radius R2 and an equivalent radius Re. It is assumed that the measuring head consists of two adjacent sets of coaxial cylinders. This method has advantages over previously reported models that use two parameters and do not propose a straightforward method to evaluate m. The pseudoplastic nature of the polymer melt decreases as the rate of loss of structural points, i.e., molecular entanglements and network junctions, increases, which produces greater mobility of the melt. A relationship between α and C(n) is found, which is simpler than other models previously reported. These results further demonstrate the feasibility of evaluating rheological properties of polymer melts in internal mixers.  相似文献   

13.
Conductive polymer composites of low melting point metal/ high melting point metal/polymer were prepared by melt mixing and investigated the effects of Sn-to-Cu content ratio on the microstructure and properties of Sn/Cu/PA6 ternary composites with a metal content of 53.3 vol %. The results show that Sn reacts with Cu to form intermetallic compounds during melting processing. When VSn/VCu is less than 1.5, the metal phase is a solid. However, if VSn/VCu is higher than 1.5, the metal phase is a suspension. As VSn/VCu increases, the morphology of metal phase changes from “islands” to physically continuous networks, and the Volume resistivity, impact strength and complex viscosity of the composites can reach 1.11 × 10−4 Ω cm, 3.8 kJ/m2 and 2.4 × 103 Pa s, respectively. Moreover, the resistivity of the composites with physically continuous networks is almost independent of temperature. The combination of low and high melt point metals can be considered as a useful strategy to prepare conductive polymer composites with high performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48820.  相似文献   

14.
刘鑫 《合成纤维》2013,(10):6-8
研究了聚氨酯(TPU)切片、氨纶无油丝和不同混合比例的TPU与交联剂的混合物的流变性能,发现4种样品在熔融状态下均为切力变稀流体,熔体的剪切黏度随剪切速率的增大而减小;交联剂加入越多,熔体剪切黏度越大,在同样剪切速率下其熔融温度越高;随着熔融温度提高,熔体的剪切黏度减小。目前纺丝生产的经验值是TPU切片的熔融温度约为210℃,熔体管路及纺丝箱的温度约在200℃左右。  相似文献   

15.
Shear and extensional rheometry was carried out on polyamide 6 (PA6) reinforced with crosslinked polyacrylic nanoparticles (PNPs) with mean size of 8 nm. The PNPs were dispersed into a commercial, injection grade, PA6 matrix by melt extrusion, at a concentration of 3 wt%. Thermal analysis showed that the PNPs did not influence the melting and decomposition temperature of the polymer matrix. However, grafting of maleic anhydride to the PNPs (denoted PNP-g-MA) increased the decomposition temperature. On the other hand, X-ray scattering and small-angle light scattering showed that the degree of crystallinity and crystal size were reduced, relative to the neat PA6, i.e., the PNPs disrupted the ordering of the polymer chains. The shear rheological properties showed that the PA6/PNP nanocomposites exhibited a linear viscoelastic behavior. Small-strain oscillatory shear showed that PA6 exhibited a predominantly viscous behavior. However, addition of PNPs induced a predominantly elastic behavior, as measured by the mechanical damping tan δ (=G″/G′), and increased the zero-shear viscosity. The increase in melt elasticity and viscosity was greater for the PA6/PNP-g-MA nanocomposite. Extensional rheometry experiments demonstrated that when PNPs were added to PA6, they induced smaller extensional viscosity, η ext, values in the matrix, at low strain rates. However, at higher strain rates the PNPs induced a strain hardening behavior. Whereas the neat polymer melt rapidly broke under extensional flow, the PA6/PNP nanocomposites first exhibited lower η ext than the neat PA6, and then η ext rapidly increased before breaking, i.e. a strain hardening behavior. The higher melt elasticity of the molten PA6 nanocomposites appears to arise from a jamming effect promoted by the PNPs.  相似文献   

16.
During micro‐injection molding, the polymer melt may undergo a shear rate up to 106 s?1, at which the rheological behaviors are obviously different from those in conventional molding process. Using both online and commercial rheometers, high‐shear‐rate capillary rheology of polystyrene (PS) melt is analyzed systematically in this work. The accurate end pressure drop and pressure coefficient of viscosity are determined via the enhanced exit pressure technique. Experimental and theoretical investigations are conducted on four significant effects, that is, the dissipative heating, end pressure loss, pressure dependence, and melt compressibility in capillary flow. For the PS melt, which exhibits distinct temperature and pressure dependence of viscosity, both dissipation and end effects become pronounced as the shear rate exceeds 2 × 105 s?1. From lower to higher shear rates (103–106 s?1), the competition between dissipation and pressure effects results in the overestimation to underestimation of Bagley‐corrected pressure drop, and finally the comprehensively corrected viscosity becomes about half of the uncorrected one owing to the enhanced superimposed effects. Moreover, the compressibility shows a minor influence on the shear viscosity. Under the shear rate range investigated, the power‐law relationship is sufficient for describing the corrected viscosity curve of PS melt used. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

17.
Abstract

The melt flow properties of a linear low-density polyethylene (LLDPE) were measured by means of a capillary rheometer under the experimental conditions of temperatures from 220° to 260°C and apparent shear rates varying from 12 to 120 s?1. The end pressure drop (ΔP end) was determined by employing the Bagley's plotting method. The results showed that ΔP end increased nonlinearly with increasing shear stress. The end pressure fluctuation phenomenon was observed at lower shear stress level, and several plateau regions were generated in the end pressure drop-shear stress curves, suggesting onset of the wall-slip phenomenon during die extrusion of the resin melt. The critical shear stress with onset end pressure fluctuation phenomenon increased with a rise of temperature. Furthermore, the melt shear flow did not strictly obey the power law. The melt shear viscosity decreased nonlinearly with increasing shear stress and with a rise of temperature, whereas the dependence of the melt shear viscosity on the test temperature accorded with a formula similar to the Arrhenius expression.  相似文献   

18.
Thermotropic main-chain liquid crystalline polymers typically have very low melt viscosity with strong temperature dependence compared to other common thermoplastics. While this is beneficial in some processing applications, such as injection molding, it presents challenges for others, such as coextrusion. In this study, the rheological properties of a thermotropic main-chain liquid crystalline polymer (Vectra A950) were enhanced by melt-state reactive processing with triphenyl phosphite (TPP), which can react with up to three polymer chain-ends through their chain-end functionalities. The influence of processing time and TPP content on the shear viscosity and other important material properties were investigated. Optimal conditions, which increased the shear viscosity by nearly a factor of 20 over the neat polymer, were found to be 4 wt% TPP and 30 min of reaction time at 290 °C. Further results from differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscopy confirmed that coupling with TPP did not affect the microstructure, melting/crystallization behavior or liquid crystallinity. The stability of TPP-modified samples was also studied at 80 °C in air and following melt reprocessing at 290–300 °C under N2 or air. Samples were stable (as measured by shear viscosity) for more than one month at 80 °C in air or when reprocessed in N2 at 290 °C for up to 10 min. However, when reprocessed at 300 °C in air, the viscosity enhancement was partially reversed due to scission of P–O bonds that were formed during the initial reaction between the polymer chain-ends and TPP.  相似文献   

19.
The rheological behavior of a sample of H-H polystyrene of Mn of 41,000 and a Mw/Mn of 2 was compared at 160 and 190°C with a sample of H-T atactic polystyrene of similar molecular weight. The melt viscosity of H-H polymer (unlike the H-T polymer) was non-Newtonian at low stresses and decreased more rapidly with stress. This observation seems to indicate a stiffer polymer chain for the H-H polystyrene. The flow activation energy (E*) of H-H polystyrene was found to be dependent on the dynamic shear stress and decreased with increasing dynamic shear stress. The dynamic shear storage modulus of the H-H polymer has a smaller increase of G′ with ω than that of the H-T polystyrene.  相似文献   

20.
Several studies of melt rheological properties of polystyrene have been conducted over the past 50 years. Several approaches, including empirical models, have been developed to understand the behavior of materials using simple equations. The existing melt rheology models are best suited for high‐molecular‐weight polymers whose Tg does not vary. In this work, a semiempirical viscosity equation has been derived, including the effect of Tg dependence on molecular weight, to describe the melt rheology of low‐molecular‐weight polymers. The equation is derived based on a combination of well‐known concepts, such as the effects of free volume and molecular dynamics on polymer rheology. This provides a better understanding of the rheological behavior in the low‐molecular‐weight regime with respect to temperature and molecular weight. Because of the industrial trend towards lower molecular weight materials for applications such as high solids coatings, this unifying approach, based on the free volume theory with a simple expression, is of extreme practical significance. This equation can predict the zero shear viscosity behavior for different molecular weights, including low‐molecular‐weight regions, and temperatures. Viscosity calculations using the empirical equation agree with published experimental data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2597–2607, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号