首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
This paper describes the process optimization in injection molding of high-density polyethylene (HDPE). Both conventional injection molding and shear controlled orientation (SCORIM) were employed in processing. The process optimization was based on design of experiments and complemented with analysis of variance. Mechanical characterization was carried out by tensile testing. Wide-angle X-ray diffraction and differential scanning calorimetry were used for the structural characterization of the moldings. High-density polyethylene exhibits 7.2 GPa Young's modulus and 155 MPa of ultimate tensile strength following the application of SCORIM processing. These results account for a fourfold increase in Young's modulus and a fivefold increase in ultimate tensile strength compared to conventional injection molding. The maintenance of toughness while enhancing stiffness and strength of the SCORIM moldings is attributable to an oriented morphology developed during shear flow, i.e., shish-kebab structure. The frequency of shearing action has the strongest influence on the morphology development. It is also demonstrated that the studied parameters are very much interdependent. It is possible to achieve substantial gains in mechanical properties of HDPE in SCORIM processing without causing a substantial increase in cycle time. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2473–2483, 1999  相似文献   

2.
The correlation between structure development during injection molding and the modulus of injection molded PET/LCP blends were studied. Process parameters such as injection speed and mold and melt temperatures were varied to determine the effect of these parameters on the tensile modulus and structure development of the blends. The skin/core structure in the cross section of injection molded samples was observed with both optical and scanning electron microscopy techniques. Injection molding experiments show that the thickness of the skin layer increases with decreasing injection speed and decreasing melt and mold temperatures. The trends in morphological developments in the injection molded specimens correlate with the measured tensile moduli.  相似文献   

3.
The effect of shear‐controlled orientation injection molding (SCORIM) was investigated for polybutene‐1/polypropylene blends. This article reports on the methods and processing conditions used for blending and injection molding. The properties of SCORIM moldings are compared with those of conventional moldings. SCORIM is based on the application of specific macroscopic shears to a solidifying melt. The multiple shear action enhances molecular alignment. The moldings were investigated with mechanical tests, differential scanning calorimetry studies, and polarized light microscopy. The application of SCORIM improved Young's modulus and the ultimate tensile strength. The gain in stiffness was greater for higher polybutene‐1 content blends. A drastic decrease in the strain at break and toughness was observed in SCORIM moldings. The enhanced molecular orientation of SCORIM moldings resulted in a featureless appearance of the morphology. Interfacial features due to segregation were visible in the micrographs of SCORIM moldings. Both conventional and SCORIM moldings exhibited form I′ in polybutene‐1. This article explains the relationship between the mechanical properties and micromorphologies. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 806–813, 2003  相似文献   

4.
5.
In this study, the mechanical properties of isotactic polypropylene (iPP) materials with different crystallinities at room and elevated temperatures were investigated. In order to obtain samples with a certain range of crystallinity, and to ensure a uniform microstructure of these samples, the iPP samples obtained by injection molding required melt compression molding and controlled annealing. In the macromechanical studies, the experimental results showed that the storage modulus and Young's modulus of polypropylene were sensitive to the service temperature. The crystallinity also had a great influence on this relationship. A function was proposed to evaluate the dependence of the Young's modulus of polypropylene on initial crystallinity and service temperature, and tested based on experimental data. The Young's modulus of iPP is reduced by about 90% when the service temperature rises from 25 to 125 °C. Moreover, the reduced value in Young's modulus between polypropylene having the highest and lowest crystallinity was reduced from 214.55 to 56.75 MPa. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48581.  相似文献   

6.
Young's modulus distributions in the depth direction within injection moldings made from polystyrene have been investigated by empolying two independent techniques. Both methods show that the material close to the surface exhibits relatively high stiffness, whereas at all other depths a lower uniform stiffness exists. The depth dependency of other material characteristics, such as tan δ peaks in the dynamic mechanical thermal analysis spectra and molecular orientation, have been investigated in an attempt to correlate them with the stiffness distributions. It appears that the thermomechanical history of the different regions within the moldings, particularly the stresses acting during flow and the temperature gradients set up during cooling, are primarily responsible for the Young's modulus distributions presented here. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Co-injection molding of calcium carbonate filled polypropylene, short glass-fiber-filled polypropylene, or unfilled high-density polythylene melts is studied using a mediumsize injection-molding machine and a center-gated disc mold. Injection molding is carried out under non-isothermal conditions. Order of injection of the melts, injection speed, and mold temperature is changed in order to understand the mold filling in general and to investigate the type of skin/core structure and mechanical interlocking of the phases in the moldings. It is found that the order of injection is not significant in obtaining a skin/core structure but it is important in obtaining extensive phase interlocking, which is reduced if the flow rafe and the mold temperature are low. Presence of fillers appears to result in more mechanical interlocking of the phases.  相似文献   

8.
The influence of the processing variables on the residual birefringence was analyzed for polystyrene and polycarbonate disks obtained by injection‐compression molding under various processing conditions. The processing variables studied were melt and mold temperatures, compression stroke, and switchover time. The modeling of flow‐induced residual stresses and birefringence of amorphous polymers in injection‐compression molded center‐gated disks was carried out using a numerical scheme based on a hybrid finite element/finite difference/control volume method. A nonlinear viscoelastic constitutive equation and stress‐optical rule were used to model frozen‐in flow stresses in moldings. The filling, compression, packing, and cooling stages were considered. Thermally‐induced residual birefringence was calculated using the linear viscoelastic and photoviscoelastic constitutive equations combined with the first‐order rate equation for volume relaxation and the master curves for the Young's relaxation modulus and strain‐optical coefficient functions. The residual birefringence in injection‐compression moldings was measured. The effects of various processing conditions on the measured and simulated birefringence distribution Δn and average transverse birefringence <nrr?nθθ> were elucidated. Comparison of the birefringence in disks manufactured by the injection molding and injection‐compression molding was made. The predicted and measured birefringence is found to be in fair agreement. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   

9.
The effect of SCORIM was investigated on three grades of polybutene‐1 and one grade of ethylene–butene‐1 copolymer. The methods and processing conditions used for injection molding and the properties of the moldings are reported. Phase transformations and their relationship with mechanical properties are discussed in detail. Both, conventional and shear‐controlled orientation injection molding (SCORIM) were employed to produce moldings. SCORIM is based on the application of specific macroscopic shears to a solidifying melt. The multiple shear action enhances molecular alignment. The moldings were investigated by performing mechanical tests, fractographic analysis, differential scanning calorimetry studies, wide‐angle X‐ray diffraction, polarized light microscopy, and atomic force microscopy. The application of SCORIM improves the mechanical performance. Molecular orientation results in the formation of shish‐kebab morphology. One grade of polybutene‐1 exhibited a greater than fivefold increase in Young's modulus. The application of high cavity pressures favored the formation of the stable Form I' in polybutene‐1. The formation of Form I' led to a decrease in crystallinity and mechanical properties. However, this loss was by far smaller than the gain obtained via the formation of shish‐kebab morphology. The relationship between mechanical properties and micromorphologies of the investigated materials is explained. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 814–824, 2003  相似文献   

10.
The slow spontaneous development of cracks in the edges of injection moldings under “field” conditions has been observed for 30 years or more. While environmental stress cracking agents have long been implicated, the magnitude and distribution of the stresses associated with cracking have been obscure. The current study of these stresses involved polycarbonate as a model test material that was molded under systematically varied molding conditions. Surface tensile stresses, though rarely great enough alone to cause “dry” crazing or cracking were revealed through exposure to environmental stress crazing and cracking (ESC) agents. Using an old technique involving a set of calibrated ESC liquids, edge tensile stresses as great as 18 MPa were found in the edges of the moldings. Other, independent methods of stress assessment gave results in semiquantitative agreement with those of the ESC tests. Packing force, machine compliance, injection hold time, and mold flashing emerged as major variables either raising or mitigating stress levels. The root cause of the edge tensions is the mismatch in the times and pressures at which the skins and cores of moldings solidify. In short, skins quench at low pressure first, while cores solidify later during the packing stage. Upon release from the mold, elastic recovery of the core stretches the skin. More importantly, machine and mold compliances allow expansion of the part in the packing stage, during which certain areas of the skin are stretched. Solidifying the core during the packing preserves part of the skin extension as elastic strain. These effects are capable of outweighing the classical tendency of quenching to generate skin compression and core tension. A number of other effects, including release from the mold before the core has solidified, and flashing of the mold, have been found to limit the rise of skin tension.  相似文献   

11.
The self‐interference flow (SIF) of a melt in a cavity during injection molding is introduced. It comes from two streams of the melt being split by a patented mold gate called a twin gate. The effects of this flow on the static and dynamic mechanical properties, thickness distribution, and shrinkage in the transverse direction (TD) of injection‐molded isotactic polypropylene parts are discussed. SIF has an influence on the static mechanical properties, especially the impact strength. There are slight increases in the tensile strength and Young's modulus and an increase of approximately 70–90% in the impact strength in comparison with the properties of samples obtained by a conventional flow process with a common pin gate. Dynamic mechanical thermal analysis studies show an increase in the storage modulus for SIF samples. Results obtained from research into the effect of the mold temperature and injection pressure on the impact strength show that the impact strength of SIF specimens has a weaker dependence on the mold temperature and injection pressure. In addition, the flow brings a more uniform thickness distribution and a smaller shrinkage in the TD to SIF samples. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2784–2790, 2003  相似文献   

12.
Previously, bi‐axial self‐reinforcement of high‐density polyethylene (HDPE) was achieved through a uni‐axial shear stress field introduced by dynamic packing injection molding technology. Here, further improvement of tensile strength along the flow direction (MD) was achieved by blending a small amount of high‐molecular‐weight polyethylene (HMWPE) with HDPE, while the tensile strength along the transverse direction (TD) still substantially exceeded that of conventional moldings. Tensile strengths in both flow and transverse directions were considerably enhanced, with improvements from 23 MPa to 76 MPa in MD and from 23 MPa to 31 MPa in TD. The effect of HMWPE content and molding parameters on tensile properties was also investigated. The tensile strength along MD was highly dependent on HMWPE content, oscillating cycle, mold temperature, melt temperature and packing pressure, while that along TD was insensitive to composition and processing parameters within the selected design space. According to the stress–strain curves, samples with HMWPE produced by dynamic packing injection molding had a special tensile failure mode in MD, different from both typical plastic and brittle failure modes. There were no yielding and necking phenomena, which are characteristic during tensile testing of plastic materials, but there was still a considerably higher elongation compared to those of brittle materials. However, in TD, all dynamic injection molding samples exhibited plastic failure as did typical conventional injection molding samples. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
The semicrystalline morphology of injection moldings of polyamide 11 (PA 11) prepared using mold temperatures of 25, 50, and 80°C was investigated. Regardless of the mold temperature, position‐resolved X‐ray diffraction (XRD) and polarized‐light optical microscopy (POM) revealed presence of poor/imperfect α‐crystals with an almost hexagonal arrangement of molecular stems in a nonspherulitic superstructure in the skin, and formation of α‐crystals and spherulites in the core. With increasing mold temperature, the thickness of the skin layer decreased, and the perfection of α‐crystals and the spherulite size in the core increased. The experimental observations are discussed in terms of predicted crystallization temperatures, with the prediction based on cooling‐rate simulations for the various parts of the injection moldings using Moldflow® and analysis of crystallization of the relaxed melt using fast scanning chip calorimetry, XRD, and POM. It is shown that the structure gradient in PA 11 injection moldings can be forecast without considering the effects of shear for this particular polymer. POLYM. ENG. SCI., 58:1053–1061, 2018. © 2017 Society of Plastics Engineers  相似文献   

14.
Franklin Fiber whisker-reinforced silicone rubber composites were molded using both transfer and compression molding. Processing parameters, such as sprue design, milling procedure, and mold temperature were varied. The fiber orientation in the composites is anisotropic and independent of sprue design and mold temperature, but dependent on milling procedure. Fiber attrition is significant for all samples. The Young's modulus is affected by fiber orientation. The experimental modulus values are higher than those predicted by the Halpin-Tsai equations for short fibers.  相似文献   

15.
This work was aimed at understanding how the injection‐molding temperature affected the final mechanical properties of in situ composite materials based on polycarbonate (PC) reinforced with a liquid‐crystalline polymer (LCP). To that end, the LCP was a copolyester, called Vectra A950 (VA), made of 73 mol % 4‐hydroxybenzoic acid and 27 mol % 6‐hydroxy‐2 naphthoic acid. The injection‐molded PC/VA composites were produced with loadings of 5, 10, and 20 wt % VA at three different processing barrel temperatures (280, 290, and 300°C). When the composite was processed at barrel temperatures of 280 and 290°C, VA provided reinforcement to PC. The resulting injection‐molded structure had a distinct skin–core morphology with unoriented VA in the core. At these barrel temperatures, the viscosity of VA was lower than that of PC. However, when they were processed at 300°C, the VA domains were dispersed mainly in spherical droplets in the PC/VA composites and thus were unable to reinforce the material. The rheological measurements showed that now the viscosity of VA was higher than that of PC at 300°C. This structure development during the injection molding of these composites was manifested in the mechanical properties. The tensile modulus and tensile strength of the PC/VA composites were dependent on the processing temperature and on the VA concentrations. The modulus was maximum in the PC/VA blend with 20 wt % VA processed at 290°C. The Izod impact strength of the composites tended to markedly decrease with increasing VA content. The magnitude of the loss modulus decreased with increasing VA content at a given processing temperature. This was attributed to the anisotropic reinforcement of VA. Similarly, as the VA content increased, the modulus and thus the reinforcing effect were improved comparatively with the processing temperature increasing from 280 to 290°C; this, however, dropped in the case of composites processed at 300°C, at which the modulus anisotropy was reduced. Dynamic oscillatory shear measurements revealed that the viscoelastic properties, that is, the shear storage modulus and shear loss modulus, improved with decreasing processing temperatures and increasing VA contents in the composites. Also, the viscoelastic melt behavior (shear storage modulus and shear loss modulus) indicated that the addition of VA changed the distribution of the longer relaxation times of PC in the PC/VA composites. Thus, the injection‐molding processing temperature played a vital role in optimizing the morphology‐dependent mechanical properties of the polymer/LCP composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
The effect of melt vibration on the mechanical properties of polypropylene prepared by low-frequency vibration-assisted injection molding (VAIM) has been investigated. With the application of melt vibration technology, the mechanical properties of polypropylene are improved. The yield strength increases with the increment of the vibration frequency, and a peak stands at a special frequency for VAIM; the elongation at break decreases first and then increases with increasing vibration frequency, and a valley stands at a special frequency. The tensile properties increase sharply at an enlarged vibration pressure amplitude with sharply decreased elongation at break. The Young's modulus and impact strength also increase with the vibration frequency and pressure vibration amplitude. When it is prepared at 59.4 MPa and 0.7 Hz, the maximal yield strength is approximately 40 MPa versus 33.7 MPa for a conventional sample; an 18.7% increase in the tensile strength is produced. Self-reinforcing and self-toughening polypropylene molded parts have been found to be prepared at a high vibration frequency or at a large pressure vibration amplitude. Scanning electron micrographs have shown that, in the vibration field, the enhancement of the mechanical properties is attributable to more pronounced spherulite orientation and increased crystallinity in comparison with conventional injection moldings. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Injection moldings with weld lines were produced in glass reinforced polypropylene grades differing in filler content using a two‐gated hot runner injection mold. The skin‐core microstructure developed during injection molding was qualitatively analyzed by means of optical and scanning electronic microscopy techniques. The load bearing capacity of the moldings was assessed by uniaxial tensile‐impact and biaxial instrumented falling dart impact tests. Microhardness was also used to ascertain the possibility of using it as a simple nondestructive technique for characterizing glass fiber‐reinforced injection moldings. The properties were monitored at various points to evaluate their variation at the bulk and the knit region. The biaxial impact test highlights the 10‐fold reduction of the impact strength caused by the weld line. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

18.
This study of injection molding of glass fiber reinforced phenolic molding compounds examines fiber breakage and fiber orientation with key material and processing variables, such as injection speed, fiber volume fraction, and the extent of resin pre-cure. The fiber orientation, forming discrete skin-core arrangements, is related to the divergent gate to mold geometrical transition, the extent of pre-cure and injection speed functions of the melt viscosity. Transient modifications to the melt viscosity during mold filling produce variations in skin/core structure along the flow path, which are correlated to the mechanical properties of injection moldings. The melting characteristics of the phenolic resin during plasticization impose a severe environment of mechanical attrition on the glass fibers, which is sequentially monitored along the screw, and during subsequent flow through runners and gates of various sizes. Differences found between the processing characteristics of thermosets and thermoplastics raise questions concerning the applicability of thermoplastic injection molding concepts for thermosets.  相似文献   

19.
The stress-strain diagrams of undrawn and drawn polyethylene terephthalate were measured at room temperature and above the glass transition temperature. Before the stress-strain measurements the undrawn samples had been crystallized at various temperatures, whereas the drawn samples had been crystallized in the undrawn state, then were drawn at various temperatures and finally were crystallized again. The influence of the temperature of crystallization and the temperature of drawing on the Young's modulus, the tensile strength, and the fracture strain were of special interest. The fracture strain as a function of the crystallization temperature shows a minimum at room temperature. This minimum disappears above the glass transition temperature. Young's modulus and tensile strength generally are found the higher, the higher the degree of orientation in the sample. Crystallization of the undrawn samples therefore does not change these values significantly. But a drawing of the samples leads to a significant increase which is still more pronounced if the sample is crystallized after the drawing. Crystallization before drawing of a sample leads to a decrease of Young's modulus and tensile strength because in this case apparently the formation of a sufficient orientation during the drawing cannot take place. An increase of the drawing temperature above the glass transition temperature also leads to a decrease in the mentioned values.  相似文献   

20.
This work reports on the relationships between processing, the morphology and the mechanical properties of an injection molded poly(ethylene terephthalate), PET. Specimens were injection molded with different mold temperatures of 30°C, 50°C, 80°C, 100°C, 120°C, 150°C, while maintaining constant the other operative processing parameters. The thermomechanical environment imposed during processing was estimated by computer simulations of the mold‐filling phase, which allow the calculation of two thermomechanical indices indicative of morphological development (degree of crystallinity and level of molecular orientation). The morphology of the moldings was characterized by differential scanning calorimetry (DSC) and by hot recoverable strain tests. The mechanical behavior was assessed in tensile testing at 5 mm/min and 23°C. A strong thermal and mechanical coupling is evidenced in the injection molding process, significantly influencing morphology development. An increase in the mold temperature induces a decrease of the level of molecular orientation (decrement in the hot recoverable strain) and an increment in the initial crystallinity of the moldings (decrement in the enthalpy of cold crystallization), also reflected in the variations of the computed thermomechanical indices. The initial modulus is mainly dependent upon the level of molecular orientation. The yield stress is influenced by both the degree of crystallinity and the level of molecular orientation of the moldings, but more significantly by the former. The strain at break was not satisfactorily linked directly to the initial morphological state because of the expected morphology changes occurring during deformation. Polym. Eng. Sci. 44:2174–2184, 2004. © 2004 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号