首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The graft copolymerization of methyl methacrylate onto silk fibers was investigated in aqueous solution using Mn3+ acetyl acetonate [Mn(acac)3] as initiator. The rate of grafting was determined by varying monomer, acidity of medium, temperature, and reaction medium. The graft yield increases significantly with increase of [Mn(acac)3] concentration up to 0.01M, and with further increase of [Mn(acac)3] the graft yield decreases. The effect of the increase of monomer concentration brings about a significant enhancement in the graft yield, and with further increase the graft yield decreases. The rate of reaction is temperature dependent; with increasing temperature, the graft yield increases. Among the solvent composition studied, a water/solvent mixture containing 10% of the solvent seems to constitute the most favorable medium for grafting, and, with further increase of solvent composition, the graft yield decreases. The effect of some inorganic salts, organic solvents, and complexing agents has been investigated.  相似文献   

2.
The graft copolymerization of methyl methacrylate onto silk fibers initiated by a hydrogen peroxide–thiourea redox system was investigated under various conditions. The effects of monomer, initiator, temperature, acidity of the medium, and solvent on the rate of grafting were studied. The graft yield increases with the increase of monomer and initiator concentration. The graft yield also increases with the increase of acid concentration upto 22.50 × 10?2M and thereafter it decreases. The effect of some inorganic salts on the rate of grafting has also been investigated, and a suitable mechanism has been suggested.  相似文献   

3.
The use of tetravalent ceric ions to initiate graft-copolymerization of methyl methacrylate onto silk has been investigated. The rate of grafting has been determined by varying monomer, cerium (IV), temperature, and nature of silk. The graft yield increases with increasing monomer concentration up to 0.65 mol/l and with further increase of monomer, the graft yield decreases. The percentage of grafting increases with increasing ceric ion concentration up to 0.03 mol/l and thereafter it decreases. The rate of reaction is temperature dependent, with increasing temperature, the graft yield increases. The grafting is considerably influenced by chemical modification prior to grafting. The effect of different species of ceric ion and CuSO4 on the rate of grafting has also been investigated.  相似文献   

4.
The graft copolymerization of methyl methacrylate onto Mulberry silk fibers was studied in aqueous solution using Mn(acac)3 as initiator. Perchloric acid was found to catalyze the reaction. The rate of grafting was investigated by varying the concentration of the monomer and the complex, acidity of the medium, the solvent composition of the reaction medium, the surfactants, and the inhibitors. The graft yield increases with increasing concentration of Mn(acac)3 up to 0.01 mol/L, decreasing thereafter. Increase of MMA concentration up to 0.56 mol/L increases graft yield, and thereafter it decreases. Among the various vinyl monomers studied, MMA was found to be most suitable for grafting. Grafting increases up to 7.5 × 10?3 mol/L of HClO4 concentration, and thereafter it decreases. A suitable reaction scheme has been proposed and a rate equation has been derived. The energy of activation has been calculated from the Arrhenius plot. The chain transfer constants for various chain transfer solvents have been evaluated from the average molecular weight (M?) of grafted poly(methyl methacrylate).  相似文献   

5.
The graft copolymerization of methyl methacrylate (MMA) onto chemically modified tussa silk fibers in aqueous media using potassium peroxodisulfate-thiourea redox initiator system was studied at 60°C. The effects of time of reaction, concentrations of oxidant, thiourea (TU), monomer (M), amount of silk fibers on graft yield have been studied. The effects of reaction medium, acid concentration, and some inorganic salts and organic solvents on grafting have also been investigated. A significant increase in percent of grafting was observed with increasing monomer concentration to 65.86 · 10?2 mol · 1?1; a further increase of monomer concentration is associated with the decrease of graft yield. The graft yield increases with an increase of thiourea concentration up to 10 · 10?1 mol · 1?1, beyond which it decreases very significantly. A measurable increase of the graft yield was also observed with an increase of the oxidant concentration up to 0.08 mol · 1?1 beyond which the graft yield decreased. The graft yield was medium dependent. The reaction mechanism of the grafting process has been proposed and a rate expression has been derived on the basis of experimental findings. IR spectra of the grafted fiber and original fiber have been taken and their characteristic bands have been identified. The thermal behaviour of the original and grafted silk fibers has been studied by TGA and DTG analysis. Grafting has improved thermal stability as well as the light fastness of silk dyed with Rhodamine B.  相似文献   

6.
The use of a bromate-thiourea redox system to initiate graft copolymerization of methyl methacrylate onto silk has been investigated. The rate of grafting has been determined by varying the concentration of bromate ion, monomer, thiourea, the temperature and the solvent. The graft yield increases with increasing the bromate ion concentration up to 20 mmo1/1. With further increase of oxidant the graft yield decreases. The percentage of grafting increases with increase of hydrochloric acid up to 40 mmo1/1. Thereafter it decreases. The effect of increasing thiourea concentration up to 15 mmo1/1. is to bring about an increase in the graft yield. Above this concentration grafting decreases sharply. The rate of grafting increases with increase of temperature. The use of various water soluble solvents effects the percentage of grafting considerably. The alkali solubility of the grafted fiber has been investigated.  相似文献   

7.
The graft copolymerization of methyl methacrylate onto silk fibers was investigated in aqueous solution using the Mn(IV)–oxalic acid redox system. The copolymerization reaction was carried out under a variety of conditions such as different monomer, initiator, oxalic acid, acid concentrations, and temperatures. The graft yield increases with increasing initiator concentration up to 5 × 10?2M, and with further increase of the initiator concentration it decreases. The graft yield also increases with increasing sulfuric acid concentration up to 15 × 10?2M, and decreases thereafter. The rate of grafting also increases with increase in oxalic acid concentration up to 1.5 × 10?2M and 84.592 × 10?2M, respectively, and thereafter the rate of grafting shows down. The effect of temperature, solvents, and salts on graft yield has also been investigated and a plausible rate expression has been derived.  相似文献   

8.
The use of trivalent manganese to initiate graft-copolymerization of acrylamide onto nylon-6 has been investigated. The rate of grafting has been determined by varying monomer, manganese(III), temperature and solvent mixtures. The graft yield increases with increasing monomer concentration up to 0.8 M and with further increase of monomer concentration the graft yield decreases. The percentage of grafting increases with managanese (III) ion concentration up to 5.25 × 10?3 M and thereafter it decreases. The rate of reaction depends on temperature. Among the solvent composition studied, a water/solvent mixture containing 25% of the solvent seems to constitute the most favourable medium for grafting and with further increase of solvent composition, the graft yield decreases.  相似文献   

9.
The feasibility of chromium(VI) to induce graft polymerization of methyl methacrylate onto silk was investigated. The rate of grafting was determined by varying monomer concentration, chromium(VI) concentration, temperature, acidity of the medium, nature of the silk, reaction medium, and redox system. The graft yield increased with increasing monomer concentration up to 0.65M, and with further increase of monomer the graft yield decreased. The graft yield increased with increasing chromium(VI) concentration. The grafting is considerably influenced by chemical modification of silk prior to grafting. The graft yield is influenced by thiourea concentration, decreasing with increasing thiourea concentration. The effect of certain inorganic salts and anionic surfactants on the rate of grafting was investigated.  相似文献   

10.
The graft copolymerization of methyl methacrylate onto silk initiated by thallium (III) perchlorate was investigated in aqueous medium. The rate of grafting was evaluated varying the concentration of monomer, initiator, and acid, and the temperature. The graft yield was found to increase with increasing the monomer and initiator concentrations. The graft yield was found to decrease with increasing the acid concentration. The effect of inhibitors and various solvents on the graft yield was studied. From the Arrhenius plot the overall activation energy was found to be 4.2 kcal/mol. A suitable kinetic scheme has been proposed, and a rate equation has been derived.  相似文献   

11.
Graft copolymerization of methyl methacrylate onto silk was investigated in aqueous solution using potassium peroxydiphosphate as initiator. The rate of grafting was determined by varying monomer, peroxydiphosphate ion, temperature, and solvent. The graft yield increased with increasing peroxydiphosphate ion upto 8 × 10?3 mol/1 and with further increase of peroxydiphosphate ion the graft yield decreased. The graft yield increased with increasing monomer concentration upto 9 wt.-% and with further increase of monomer the graft yield decreased. The rate of grafting increased with the increase of temperature. The effect of acid and water soluble solvents and salts on graft yield was investigated and a suitable rate expression was derived.  相似文献   

12.
The graft copolymerization of methyl methacrylate onto wool fibers was investigated in aqueous solution using the peroxydiphosphate–fructose redox system. The rate of grafting was determined by varying monomer, acidity of the medium, temperature, nature of wool, and reaction medium. The graft yield increases with increase in peroxydiphosphate concentration. With increase in concentration of fructose up to 7.5 × 10?4 mole/l., there is a significant increase in graft yield; and with further increase in concentration of fructose the graft yield decreases. The graft yield increases with increase in monomer concentration up to 65.72 × 10?2 mole/l. and decreases thereafter. The grafting is considerably influenced by chemical modification prior to grafting. The effect of acid, temperature, and solvent on the rate of grafting has been investigated and a suitable rate expression has been derived.  相似文献   

13.
The graft copolymerization of methyl methacrylate (MMA) onto native and reduced Indian Chokla wool fibers was studied in aqueous solution using the acetylacetonate oxovanadium (IV) complex. The rate of grafting was investigated by varying the concentration of the monomer and the complex, acidity of the medium, and the solvent composition of the reaction medium. The graft yield increases with increasing concentration of the initiator up to 8.75 × 10?5 mol/L, of the monomer up to 0.5634 mol/L, and thereafter it decreases. MMA was found to be the most active monomer when compared to other vinyl monomers. Grafting increases with increasing concentration of HClO4 and with increasing temperature. Reduced and oxidized wools were found to be better substrates than untreated, esterified, crosslinked, and trinitrophenylated wools. The extent of grafting was mostly dependent upon the concentration of ? SH groups in case of reduced wool. A suitable reaction scheme has been proposed and the activation energy was calculated from Arrhenius plot.  相似文献   

14.
Graft copolymerization of methyl methacrylate onto wool was investigated in aqueous solution using potassium peroxydiphosphate as initiator. The rate of grafting was determined by varying monomer, peroxydiphosphate ion, temperature, solvent, and nature of wool. The graft yield increases with increase in monomer concentration. The graft yield increases significantly by increasing peroxydiphosphate ion up to 80 × 10?4mole/l.; with further increase of peroxydiphosphate ion the graft yield decreases. The rate of grafting increases with increase in temperature. The effect of acid-and water-soluble solvents on the rate of grafting was investigated and a suitable rate expression has been derived.  相似文献   

15.
Graft copolymerization of methyl methacrylate (MMA) was carried out on jute fibers using a V5+ -cyclohexanone redox initiator system. The effect of the concentration of acid, monomer, and V5+ on graft yield have been studied. In order to obtain optimum conditions of grafting, the effects of temperature, acid, reaction medium, solvent, and some inorganic salts on graft yield have been investigated. The most remarkable features of the investigation include the proposition of a mechanism and derivation of rate expression for the grafting process. More than 100% grafting could be achieved with the present system.  相似文献   

16.
The graft copolymerization of methyl methacrylate in wool fibers was investigated in aqueous solution using V5+—thiourea redox system. The rate of grafting was determined by varying monomer, thiourea, acidity of the medium, temperature, nature of wool, different acrylic monomers, and reaction medium. The graft yield increases significantly by increasing reaction time in the initial stages of the reaction but it does slow down on prolonging the duration of grafting. The effect of increasing monomer concentration brings about a significant enhancement in the graft yield. The graft yield increases with increasing thiourea concentration, but beyond 0.0075M, the percentage graft yield decreases. The graft yields are considerably influenced by chemical modification prior to grafting. Wool reduced with thioglycolic acid is more susceptible to grafting than untreated wool; the opposite effect is noted in the case of trinitrophenylated and esterified wools. A suitable kinetic scheme has been proposed and the rate equation has been evaluated.  相似文献   

17.
Graft copolymerization of methyl methacrylate onto poly(ethylene terephthalate) fibers was investigated in aqueous perchloric acid medium using thallium(III) ions as initiator. The rate of grafting was evaluated varying the concentrations of monomer, initiator, and acid and the temperature. The rate of grafting was found to increase with increase in monomer and initiator concentrations. The graft yield was found to increase with increase in the acid concentration up to 0.49 mL?1, and beyond this concentration it was found to decrease. Increase in temperature resulted in increase in graft yield. From the Arrhenius plot the overall activation energy was found to be 3.76 kcal/mol. The effect of additives such as swelling agents, inorganic salts, different solvents, and inhibitors on graft yield was studied. A suitable kinetic scheme is proposed and a rate equation derived.  相似文献   

18.
Graft copolymerization of hydroxyethyl methacrylate (HEMA) onto poly(ethylene terephthalate) (PET) fibers using benzoyl peroxide (BP) as initiator was carried out in water and in water/organic solvent as a reaction medium. The effect of initiator concentration, reaction time, temperature, and reaction medium as well as addition of FeSO4 to the polymerization medium was studied. Percent grafting was enhanced significantly by increasing BP concentration up to 0.016 mol/L and then decreased upon further increase in initiator concentration. Increasing the monomer (HEMA) concentration up to 0.48 mol/L improves significantly the graft yield. Raising the polymerization temperature up to 85°C causes a significant increase in grafting yield; further increase in temperature leads to decrease in graft yield. Incorporation of Fe+2 ions in the polymerization system decrease the graft yield. The same situation is encountered when water/solvent mixture is used as reaction medium. Solvent employed were methanol, toluene, and benzene.  相似文献   

19.
Graft copolymerization of methyl methacrylate (MMA) onto natural jute (chemically modified) was studied using V5+ -cyclohexanol redox initiator system. The effects of time, concentration of metal ion (V5+), monomer (MMA), substrate, amount of jute fibers, temperature, and acid concentration on graft yield have been studied. The effects of some organic solvents and inorganic salts on graft yield have also been studied. A grafting mechanism is proposed and an expression has been derived for the reaction rate. Grafting has improved the thermal stability and the light fastness of jute fibers dyed with basic dyes. IR spectra of the natural jute (chemically modified) and grafted jute have been taken. More than 170% graft yield could be achieved with the present system.  相似文献   

20.
The use of tetravalent ceric ions to initiate graft-copolymerization of methyl methacrylate onto natural rubber (NR) has been investigated. The rate of grafting has been determined by varying the concentration of monomer and cerium(IV), the temperature and the solvents. The graft yield increases with increasing monomer concentration up to 1.877 M, with further increase of the monomer, the graft yield decreases. The percentage of grafting increases with increasing cerium(IV) concentration up to 0.035 M, thereafter it decreases. With increasing temperature the graft yield increases. The effect of CuSO4 on the rate of grafting has also been investigated. A plausible mechanism has been suggested and the kinetic rate expressions have been derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号