首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystallinity of a variety of poly(ethylene terephthalate) (PET) specimens, produced by thermal annealing, has been measured by three x-ray diffractometric index methods and by an index method for differential scanning calorimetric data. The measurement procedures are termed indices since they involve various methods of ranking specimens in a relative manner between maximum and minimum crystallinity standards. Statistically different index values are determined by the various physical methods and procedures of calculation for many types of specimens. The integral index method, which utilizes x-ray diffractometric data, corresponds in a more precise manner to the calorimetric index than to the other two x-ray methods, for the cases in which oriented film is annealed in a vacuum oven and is subject to a continuous pumping environment. This treatment also produces a threefold increase in number-average molecular weight of PET film. Annealing in sealed ampules, Mn constant, produces substantially the same results for all three x-ray methods but different results for the calorimetric procedure. A relatively simple two-point procedure yields virtually the same trend as the more complicated indicial methods.  相似文献   

2.
Thermal analysis has been carried out on polyester (PET) fibers after subjecting them to different physical modifications, such as drawing and heat setting. The relationship between structure and the various thermal transitions observed in the thermograms of poly(ethylene terephthalate) has been examined. It has been shown that the endothermic transition near the glass transition region and the exothermic transition at about 140°C, observed for amorphous PET fibers, may be associated with mesomorphic phase changes. The premelting endotherm is sensitive to the orientation, crystallite size distribution, and thermal prehistory. This transition actually represents melting of smaller crystals and recrystallization into larger crystals. Heat of fusion does not always necessarily represent the actual crystallinity, or order of the fiber prior to differential scanning calorimetry and may be influenced by several factors. The fusion curves give more information regarding crystallite size distribution than crystallinity.  相似文献   

3.
The process of solid-phase crystallization in poly(ethylene terephthalate) has been followed by means of differential enthalpic analysis. Kinetic data for the process has been obtained for isothermal annealing from 100 to 115°C., showing induction times and first-order rate dependence. For the material studied, undrawn polyester filaments, an activation energy of 44 kcal./mole was determined. The technique used provides more direct monitoring of the crystallization phenomenon than that achieved with other methods.  相似文献   

4.
F.S. Smith  R.D. Steward 《Polymer》1974,15(5):283-286
The rate of crystallization of oriented poly(ethylene terephthalate) has been measured at 100°, 120° and 150°C using carefully prepared amorphous fibre samples. The samples were held to length during crystallization so that shrinkage did not occur, and the course of crystallization was followed by measuring the changes in density and boiling water shrinkage of the samples. The results show that the rate of crystallization is strongly dependent on the degree of orientation. Nucleation and initial growth of crystallites occur in times of the order of milliseconds at 120°C in samples of birefringence 0.08 compared with times of several minutes in isotropic material. It was found that crystallization in oriented material cannot be described by the Avrami equation.  相似文献   

5.
The rigid amorphous phase, the low temperature melting endotherm, and their development with thermal treatment in poly(ethylene terephthalate) (PET) were investigated by means of modulated differential scanning calorimetry. The differential of the reversing heat capacity and nonreversing heat flow signals were used to analyze the behavior of the glass transition and the low temperature melting endotherm. With increasing annealing time, the increment of the heat capacity at the glass‐transition temperature decreased and the increment of heat capacity at the annealing temperature increased. It was suggested that the origin of the low temperature melting endotherm mainly resulted from the transition of the rigid amorphous fraction for the PET used. The glasslike transition of the rigid amorphous fraction occurred between the glass transition and melting. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2779–2785, 2001  相似文献   

6.
Amorphous unoriented poly(ethylene terephthalate) was crystallized at 25°C by various organic liquids. The crystalliznity induced in the amorphous polymer was measured by differential scanning calorimetry and infrared spectroscopy. The ability of liquids to interact with and induced crystallinity in the amorphous polymer was classified on the basis of their solubility parameters. Measurements of the density of liquid-crystallized 0.8-mil films of poly(ethylene terephthalate) indicated the presence of extensive internal voids in the semicrystalline polymer matrix. Comparison of differential scanning calorimetric thermograms and infared spectra of heat-crystalized and liquid-crystallized polymer indicated significant differences in the polymer morphologies induced by the two crystallization processes.  相似文献   

7.
8.
The fabrication of poly(ethylene terephthalate), PET, into fibers, films, and containers usually involves molecular orientation caused by molecular strain, which may lead to stress- or strain-induced crystallization (SIC). The SIC of PET was studied by the methods of birefringence, density, thermal analysis, light scattering, and wide-angle X-ray. The development of crystallinity is discussed in relation to the rate of crystallization, the residual degree of orientation, and stress relaxation. The experimental procedure involves stretching samples at temperatures above the glass transition temperature, Tg, to a given extension ratio and at a specific strain rate of an Instron machine. At the end of stretching, the sample is annealed in the stretched state and at the stretching temperature for various periods of time, after which the sample is quickly quenched to room temperature for subsequent measurements. During stretching, the stress strain and the stress relaxation curves are recorded. The results indicate that the SIC of annealed, stretched PET can proceed in three different paths depending on the residual degree of orientation. At a low degree of residual orientation, as indicated by the birefringence value, annealing of stretched PET leads only to molecular relaxation, resulting in a decrease of birefringence. At intermediate orientation levels, annealing causes an initial decrease in birefringence followed by a gradual increase and finally a leveling off of birefringence after a fairly long period of time. At higher orientation levels, annealing causes a rapid increase in birefringence before leveling off. The interpretation of the above results is made using the measurements of light scattering, differential scanning calorimetry, and wide-angle X-ray. The rate of the SIC of PET is also discussed in terms of specific data analysis.  相似文献   

9.
The crystallization kinetics of poly(ethylene terephthalate) was measured under isothermal conditions by DSC in the presence of various fillers and with varying filler concentrations. The fillers used were carbon, titanium dioxide, glass fiber, and calcium carbonate. The kinetics was calculated using the slope of the crystallization vs. time plot, the times for 10% and 50% reduced crystallization, and the Avrami equation. Activation energies were determined from measurements under different isothermal temperatures. The fillers caused athermal nucleation to be inhibited as shown by the increased values of the Avrami exponent, n. Interactions between the polyester and filler were interpreted to reduce the mobility of the polymer in the melt. This decreased the rate of crystallization and increased its activation energy. The order of the filler effect in reducing crystallization was the following: no filler < carbon < titanium dioxide < glass fiber < calcium carbonate. The concentrations of filler were above those typically used for nucleation and more in the range expected for reinforcement or dilution of the polymer. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Annealing poly(ethylene terephthalate) (PET) at high temperature results in a crystalline phase stable to 10°C higher than the temperature previously regarded as the equilibrium melting point. Melting temperatures as high as 289°C can be attained, which is equivalent to the equilibrium melting point determined herein for PET. The high melting point and tendency to superheat suggest that the crystals possess a substantial extended chain structure, notwithstanding the magnitude of the infrared fold band.  相似文献   

11.
The melting behaviour and the morphology of poly(ethylene terephthalate) crystallized from the melt are reported. In general, dual or triple melting endotherms are seen, and single endotherms are seen when the samples are crystallized above 215°C for long times. The location of the uppermost endotherm was found to be constant below Tc = 230°C, and above that temperature the location depends on Tc. Therefore, we have shown that samples of PET which are crystallized above Tc = 230°C contain perfect crystals only; below Tc = 230°C, they contain perfect and imperfect crystals. Scanning electron microscopy showed that the perfect crystals are the dominant lamellae in the spherulitic structure, while the imperfect crystals are the subsidiary lamellae in the spherulitic structure, The amorphous regions are located between individual lamellae.  相似文献   

12.
Poly(ethylene terephthalate) was submitted to five reprocessing cycles by extrusion. The materials were analyzed with oligomer and after oligomer extraction. The nonisothermal crystallization of the five samples was investigated by differential scanning calorimetry. Samples with oligomer content and carboxylic end group concentrations between 44 and 98 eqw × 106 g presented a nonlinear correlation with the crystallization temperature. After the oligomer extraction of the polymer, this correlation is linear. The nonisothermal crystallization results were analyzed using the Ozawa model. The polymers containing oligomers obey the Ozawa model for the first reprocessing cycle. After oligomer extraction, the polymers obey the Ozawa model from the first to the third reprocessing cycle. In both cases, the exponential n values are close to 2.0. For the other cycles, deviations from this model occur. The activation energy was calculated using the Kissinger and Varma models. The values obtained for the five reprocessed samples were inversely proportional to the molar mass when analyzed by both models. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 525–531, 2004  相似文献   

13.
Studies of the nonisothermal crystallization kinetics of poly(ethylene terephthalate) nucleated with anhydrous sodium acetate were carried out. The chemical nucleating effect was investigated and confirmed with Fourier transform infrared and intrinsic viscosity measurements. The Avrami, Ozawa, and Liu models were used to describe the crystallization process. The rates of crystallization, which initially increased, decreased at higher loadings of the additive. The activation energy, calculated with Kissinger's method, was lower for nucleated samples. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Carbon nanotubes induced crystallization of poly(ethylene terephthalate)   总被引:2,自引:0,他引:2  
K. Anoop Anand  Rani Joseph 《Polymer》2006,47(11):3976-3980
We have investigated the crystallization characteristics of melt compounded nanocomposites of poly(ethylene terephthalate) (PET) and single walled carbon nanotubes (SWNTs). Differential scanning calorimetry studies showed that SWNTs at weight fractions as low as 0.03 wt% enhance the rate of crystallization in PET, as the cooling nanocomposite melt crystallizes at a temperature 10 °C higher as compared to neat PET. Isothermal crystallization studies also revealed that SWNTs significantly accelerate the crystallization process. WAXD showed oriented crystallization of PET induced by oriented SWNTs in a randomized PET melt, indicating the role of SWNTs as nucleating sites.  相似文献   

15.
Cooling is a critical step in any crystalline polymer molding or extrusion process. A simulation is proposed which will predict the transient temperature and crystallinity profiles developed when a finite polymeric slab comes in contact with a cooling fluid. A generalized, phenomenological model of the crystallization kinetics of polymers is incorporated to account for the effect of the latent heat of crystallization on the thermal history as well as on the crystalline structure at any point in the slab. The model assumes heterogeneous nucleation and temperature-dependent radial growth of spherulites. DSC cooling thermograms for the polymer are used to verify the kinetic model for comparing experimental measurements against simulated results. Observed spherulite sizes should also be matched by the simulation. Kinetic data have been obtained for two grades of poly(ethylene terephthalate) which have the same growth rate expression but different nucleation characteristics. Crystallinity of these two polymers decreases rapidly as either quench temperatures or nucleation densities are decreased independently. Calculations have been carried out for 1/16 in. thick sheets of polymer exposed to a cooling medium with a heat transfer coefficient of 100 Btu/hr/ft2/°F. Temperature gradients are also presented. The simulation can be used for optimizing quench conditions in polyester film extrusion.  相似文献   

16.
The miscibility and crystallization kinetics of the blends of poly(trimethylene terephthalate) (PTT) and amorphous poly(ethylene terephthalate) (aPET) have been investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that PTT/aPET blends were miscible in the melt. Thus, the single glass transition temperature (Tg) of the blends within the whole composition range and the retardation of crystallization kinetics of PTT in blends suggested that PTT and aPET were totally miscible. The nucleation density of PTT spherulites, the spherulitic growth, and overall crystallization rates were depressed upon blending with aPET. The depression in nucleation density of PTT spherulites could be attributed to the equilibrium melting point depression, while the depression in the spherulitic growth and overall crystallization rates could be mainly attributed to the reduction of PTT chain mobility and dilution of PTT upon mixing with aPET. The underlying nucleation mechanism and growth geometry of PTT crystals were not affected by blending, from the results of Avrami analysis. POLYM. ENG. SCI., 47:2005–2011, 2007. © 2007 Society of Plastics Engineers  相似文献   

17.
This article reports the first application of the two‐dimensional differential scanning calorimetry correlation mapping, two‐dimensional‐DSC‐CM to analyze DSC rate–time data of PEEK. This provided evidence that the isothermal crystallization reduced rate–time curves exhibited fractional n values when analyzed by the Avrami equation. These fractional n values, which increased with temperature, were consistent with the presence of two processes, primary and secondary crystallization, with an increasing contribution of the secondary crystallization to the overall crystallinity. In contrast to the known literatures, secondary crystallization was observed to proceed at early stage of primary crystallization. The study of the effect of proton irradiation, up to a dose of 9.9 MGy, showed that the fractional n value was below 3.0, and does not appear to be temperature dependent. DSC analysis of the crystallization kinetics, combined with two‐dimensional correlation mapping proved a powerful tool for investigating irradiation damage of PEEK. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44378.  相似文献   

18.
D.T. Turner  A. Schwartz 《Polymer》1985,26(5):757-762
Previously a wide range of values have been reported for the glass transition temperature, Tg, of poly(N-vinyl pyrrolidone), PVP, and it was suggested that lower values are due to variable uptakes of water caused by the hygroscopic nature of the polymer. Now it has been found that there are large variations in Tg, even in carefully dried specimens of PVP. Other factors found to influence Tg are residual monomer and the molecular weight of PVP. Polymers prepared by bulk polymerization, either by γ-irradiation or by heating with 2-azobisisobutyronitrile, have much lower values of Tg than dried ones prepared containing 30% water. The difference is mainly due to depression of Tg by residual monomer which, in the absence of water during polymerization, fails to react completely because of conversion to a glassy state. An unexplained observation is that even when all residual monomer has been removed, polymers prepared by bulk polymerization still have a lower Tg than would be expected from their molecular weight.  相似文献   

19.
The two-stage isomerization isotherms of poly(ethylene Terephthalate) have been followed through microhardness analysis. A great variation in microhardness values seems to prove the increase of the strength and stiffness of the samples produced by the secondary isomerization. A smaller variation is observed for the primary isomerization.  相似文献   

20.
The nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) blends were studied. Four compositions of the blends [PET 25/PMMA 75, PET 50/PMMA 50, PET 75/PMMA 25, and PET 90/PMMA 10 (w/w)] were melt‐blended for 1 h in a batch reactor at 275°C. Crystallization peaks of virgin PET and the four blends were obtained at cooling rates of 1°C, 2.5°C, 5°C, 10°C, 20°C, and 30°C/min, using a differential scanning calorimeter (DSC). A modified Avrami equation was used to analyze the nonisothermal data obtained. The Avrami parameters n, which denotes the nature of the crystal growth, and Zt, which represents the rate of crystallization, were evaluated for the four blends. The crystallization half‐life (t½) and maximum crystallization (tmax) times also were evaluated. The four blends and virgin polymers were characterized using a thermogravimetric analyzer (TGA), a wide‐angle X‐ray diffraction unit (WAXD), and a scanning electron microscope (SEM). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3565–3571, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号