首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of a uniformly propagating finite crack in a strip of elastic material is solved using the dynamic equations of elasticity in two-dimensions. Two specific conditions of loading on the strip with finite width are discussed. In the first case, the rigidly clamped edges are pulled apart in the opposite directions. The second case considers equal and opposite tractions applied to the crack surface. By varying the strip width to the crack length ratio, the amplitude of the dynamic stresses ahead of the running crack is determined as a function of the crack velocity. The local dynamic stresses are found to be lower than the corresponding static values for the displacement loading condition and higher for the stress loading condition. This effect becomes increasingly more important as the crack length to strip width ratio is enlarged. Numerical results for the dynamic crack opening displacement are also presented.  相似文献   

2.
The velocity of a semi-infinite crack slowly propagating in aninfinitely long strip made of a viscoelastic composite material isdetermined according to Christensen's fracture criterion. The edges ofthe strip are subjected to uniform opposite displacements normal to thecrack plane. The crack velocity is obtained from an energy balanceequation involving the energy dissipated in the whole strip; the latteris evaluated using an approximate, but sufficiently accurate, expressionof the stress field in the structure obtained by taking into account thestrong anisotropy of the long fibre composite material of interest. Thisnew version of Christensen's criterion compares favourably with theoriginal one and gives crack velocity predictions very close to thoseprovided by Schapery's criterion.  相似文献   

3.
S. M. Kwon 《Acta Mechanica》2004,167(1-2):73-89
Summary. In this paper, a finite crack propagating at constant speed in a functionally graded piezoelectric material (FGPM) is studied. It is assumed that the electroelastic material properties of the FGPM vary continuously according to exponential gradients along the thickness of the strip, and that the strip is under anti-plane shear mechanical and in-plane electrical loads. The analysis is conducted on the electrically unified (natural) crack boundary condition, which is related to the ellipsoidal crack parameters. By using the Fourier transform, the problem is reduced to the solutions of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and crack sliding displacement are presented to show the influences of the elliptic crack parameters, crack propagation speed, electric field, FGPM gradation, crack length, and electromechanical coupling coefficient. It reveals that there are considerable differences between traditional electric crack models and the present unified crack model.  相似文献   

4.
This work is concerned with the analysis of rapid crack propagation (RCP) in Polymethylmethacrylate (PMMA), Polycarbonate (PC) and two-layer PMMA/PC systems. Remarkably constant crack speeds were observed, and higher crack speeds corresponded to the higher preloads. Uniform fracture surfaces were associated with these constant speed RCPs. An indirect method was used to characterise dynamic fracture properties of the materials. The method relies on the recorded crack length histories and boundary conditions which are incorporated in a dynamic Finite Element (FE) code to generate the crack resistance (G ID). The numerical simulation of the constant speed RCPs generated highly scattered G ID data. Very large variations of the computed G ID with the crack length did not correspond to fracture surface appearances. Geometry dependent and multivalued crack resistance results with respect to the crack speed cast doubt on the uniqueness of G ID. In this work, attempts were made to overcome these difficulties by exploring the concept that the anomalies arise from large local strains around the rapidly moving crack tip, resulting in the crack seeing a low local modulus. It is demonstrated that the critical source of error on the analysis of RCP, is the improper linear elastic representation of the material behaviour around the propagating crack tip. Since the parameters describing the behaviour of the materials near the propagating crack tip were unknown, local non-linear effects were approximated by a local low modulus strip along the prospective crack path. The choice of the local modulus was justified by measurements of the strain histories along the crack path during RCP. The local strip low modulus model generated a larger amount of the kinetic energy in the sample and the crack resistance was reduced compared to results from the single constant modulus approach. Most importantly, G ID data were nearly independent of the crack length, crack speed and the specimen size. This local modulus concept was also successfully applied to the analysis of RCP in the duplex specimen configuration.  相似文献   

5.
Dynamic effects near a propagating crack tip in a ductile material have been investigated on the basis of a model with a strip-zone of yielding. In the analysis of fast fracture the unknown variables are the speeds of the leading and trailing edges of the yield zone, where the latter defines the position of the actual crack tip. Propagation of the crack tip is governed by two conditions: the usual one that the cleavage stress is bounded at the leading edge of the yield zone, and a second condition which involves the yield stress and the stretch of the fiber at the trailing edge of the yield zone. By combining well-known results for transient dynamic stress-intensity factors and crack-opening displacements corresponding to external loads, with steady-state dynamic results for the fields corresponding to the cohesive tractions in the yield zone, the dynamic problem of fast fracture has been analyzed for both the Mode III and the Mode I case. The results can be used to investigate crack arrest when a propagating crack tip enters a region of higher ductility.  相似文献   

6.
研究当压电条同时与两个不同材料的弹性条粘接在一起,在反平面机械载荷及面内电载荷联合作用下,长度不变的有限Griffith 界面裂纹沿加层压电条界面以常速稳态扩展时裂尖的动态断裂问题。应用Fourier积分变换将问题化为以第二类Fredholm积分方程表示的对偶积分方程,导出了相应的动应力强度因子表达式。给出了动应力强度因子与裂纹传播速度、裂纹长度、压电条及弹性条厚度、电荷载大小及方向的关系曲线。研究结果对结构设计及结构失效的预防具有理论和应用价值。  相似文献   

7.
In this paper a finite interface crack with constant length (Yoffe-type crack) propagating along the interface between two dissimilar functionally graded strips with spatially varying elastic properties under in-plane loading is studied. By utilizing the Fourier transformation technique, the mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. The influences of the geometric parameters, the graded parameter, the strip thickness and crack speed on the stress intensity factors and the probable kink angle are investigated. The numerical results show that the graded parameters, the thicknesses of the functionally graded strips and the crack speed have significant effects on the dynamic fracture behavior of functionally graded material structures.  相似文献   

8.
An analytical solution has been attained to establish the closed form expression of stress intensity factor at the tip of a semi‐infinite crack, dynamically propagating in an initially stressed transversely isotropic poroelastic strip due to Love‐type wave for the case of concentrated force of constant intensity as well as for the case of constant load. The study presents the sound effect of various affecting parameters viz. speed of the crack, length of the crack, horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, porosity parameter and anisotropy parameter on the stress intensity factor. In order to delineate the effects of these aforementioned parameters on the stress intensity factor graphically, numerical simulations have been accomplished. One of the major highlight of the paper is the comparative study carried out for horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, porosity parameter and anisotropy parameter with the case when the strip is isotropic, non‐porous and free from initial stresses. Wiener–Hopf technique and the Fourier integral transform has been effectuated for the procurement of the closed form expression (exact solution) of stress intensity factor.  相似文献   

9.
Under the assumption of plane strain, a solution for a thermoelastic problem concerning a strip is obtained by the method of dual integral equations. It is assumed that the crack is parallel to the edges of the strip. The variation with the strip width of stress-intensity factor is shown graphically.  相似文献   

10.
In this study, a symmetrical finite strip with a length of 2L and a width of 2h, containing a transverse symmetrical crack of width 2a at the midplane is considered. Two rigid plates are bonded to the ends of the strip through which uniformly distributed axial tensile load of magnitude 2hp0 is applied. The material of the strip is assumed to be linearly elastic and isotropic. Both edges of the strip are free of stresses. Solution for this finite strip problem is obtained by means of an infinite strip of width 2h which contains a crack of width 2a at y = 0 and two rigid inclusions of width 2c at y = ±L and which is subjected to uniformly distributed axial tensile load of magnitude 2hp0 at y = ±∞. When the width of the rigid inclusions approach the width of the strip, i.e., when c  h, the portion of the infinite strip between the inclusions becomes identical with the finite strip problem. Fourier transform technique is used to solve the governing equations which are reduced to a system of three singular integral equations. By using the Gauss–Jacobi and the Gauss–Lobatto integration formulas, these integral equations are converted to a system of linear algebraic equations which is solved numerically. Normal and shearing stress distributions and the stress intensity factors at the edges of the crack and at the corners of the finite strip are calculated. Results are presented in graphical and tabular forms.  相似文献   

11.
Crack propagating in a functionally graded strip under the plane loading   总被引:1,自引:0,他引:1  
In the present paper, a finite crack with constant length (Yoffe type crack) propagating in the functionally graded strip under the plane loading is investigated by means of the Schmidt method. By using the Fourier transform and defining the jumps of displacement components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement components across the crack surface are expanded in a series of Jacobi polynomial. Numerical examples are provided to show the effects of the material properties, the thickness of the functionally graded strip, and speed of the crack propagating upon the dynamic fracture behavior.  相似文献   

12.
A finite crack with constant length (Yoffe type crack) propagating in the functionally graded orthotropic strip under the plane loading is investigated by means of the Schmidt method. By using the Fourier transform and defining the jumps of displacement components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement components across the crack surface are expanded in a series of Jacobi polynomial. Numerical examples are provided to show the effects of material properties, the thickness of the functionally graded orthotropic strip and the speed of the crack propagating upon the dynamic fracture behavior.  相似文献   

13.
The diffraction of a plane horizontally polarized shear wave by a crack of finite length is analyzed and the extension of both crack edges prior to the arrival of the first diffracted waves, i.e. quasi-sudden fracture, is studied. In light of an energy rate balance criterion it is found that for an incident step-stress pulse, quasi-sudden fracture may occur but always at both crack edges, often initiating at the trailing edge first. For an incident wave whose stress vanishes at the wavefront, however, quasi-sudden fracture may occur only at the leading crack edge, or if at both edges, at the leading edge first. For both waveforms, the rate of crack extension is non-constant and increases rapidly so that crack branching may be expected. Finally instantaneous crack extension at a uniform rate is possible only if the incident wave stress possesses a square-root sinularity at the wavefront. This result agrees with earlier work by Achenbach.  相似文献   

14.
Making use of the Fourier transform and Fourier series, the dynamic stress intensity factor of a rectangular sheet with a central crack moving at a constant velocity under antiplane shear is obtained. It is also proved that the solutions of a strip with a central crack propagating at constant velocity for Mode III are the special cases of the solution in the present paper.  相似文献   

15.
The response of a through-the thickness crack with finite dimensions to impact in a finite elastic strip is investigated in this study. The elastic strip is assumed to be subjected to anti-plane shear deformation. Laplace and Fourier transform were used to formulate the mixed boundary value problem. The dynamic stress intensity factor and crack opening displacement are obtained as a function of time and the strip width to crack length ratio, h/a. The results indicate that the intensity of the crack-tip stress field reaches a peak very quickly and then decreases in magnitude oscillating about the static value. In general, the dynamic stress intensity factor is higher for small h/a. Similar behavior has also been found for the crack surface displacement.  相似文献   

16.
Impact response of a finite crack in an orthotropic strip   总被引:1,自引:0,他引:1  
Summary The elastodynamic response of a finite crack in an infinite orthotropic strip under normal impact is investigated in this study. The crack is situated symmetrically and oriented in a direction normal to the edges of the strip. Laplace and Hankel transforms are used to reduce the transient problem to the solution of a pair of dual integral equations in the Laplace transform plane. The solution to the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. Numerical values on the dynamic stress intensity factor for some fiber-reinforced composite materials are obtained and the results are graphed to display the influence of the material orthotropy.  相似文献   

17.
Edge delamination cracks in laminated composite strips are analyzed with the aid of the enriched finite element method, wherein the asymptotic singular solution for a delamination crack is incorporated into finite elements. The strip is assumed to be in the state of generalized plane deformations including extension (compression), bending or torsion. Comparison of the numerical results with those from other methods is made to confirm the solution. The crack growth stability is examined for a couple of ply orientations in terms of the energy release rate and mode mixity.This work has been partially supported by the Agency for the Defense Development in Republic of Korea: under the Grant No. ADD-92-5-004.  相似文献   

18.
F. Narita  Y. Shindo 《Acta Mechanica》1999,137(1-2):55-63
Summary Following the theory of linear piezoelectricity, a forth-power stress intensity factor crack growth equation in an orthotropic piezoelectric ceramic strip is developed under mode III loading. The crack is situated symmetrically and oriented in a direction parallel to the edges of the strip. Dugdale's assumption regarding the plastic zone in metals is applied to estimate the effects of yield around the crack tips. Fourier transforms are used to reduce the electroelastic problem to one involving the numerical solution of a Fredholm integral equation of the second kind. A direct approach based on the accumulated plastic displacement criterion for crack propagation is used to develop the equation to predict the fatigue crack growth. Graphical results showing the effect of electroelastic interactions on the fatigue crack growth rate are presented.  相似文献   

19.
The stress and displacement fields for a crack propagating in functionally graded materials (FGMs) with property variation angled to crack direction are obtained. The FGMs have a linear variation of shear modulus with a constant density and Poisson’s ratio. The solutions for higher order terms in the dynamic equilibriums are obtained by transforming the general differential equations to Laplace’s equations. Using the stress fields, the effects of the nonhomogeneity and the angled properties on stress components are investigated. In addition to, the contours of the constant maximum shear stress around the static and propagating crack tip are generated. The contours of the constant maximum shear stress around the static and propagating crack tip tilt toward the property gradation direction.  相似文献   

20.
This paper is concerned with the thermal fracture problem of a functionally graded orthotropic strip, where the crack is situated parallel to the free edges. All the material properties are assumed to be dependent only on the coordinate y (perpendicular to the crack surfaces). By using Fourier transform, the thermoelastic problem is reduced to those that involve a system of singular integral equations. Numerical results are presented to show the effects of the crack position and the material distribution on the thermal stress intensity factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号