首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses.  相似文献   

2.
alpha 1, beta 1, and gamma 2S gamma-aminobutyric acid (GABA) type A receptor (GABAR) subunit cDNAs were transiently expressed in derivative cell lines of mouse L929 fibroblasts, which possessed different levels of the catalytic subunit of cAMP-dependent protein kinase (PKA). These cell lines included L929 (intermediate levels of kinase), C alpha 12 (elevated levels of kinase), and RAB10 (low levels of kinase) cells. Pharmacological analysis of GABA-evoked whole-cell currents revealed that, compared with expression in L929 and RAB10 cells, expression of alpha 1 beta 1 gamma 2S GABARs in C alpha 12 cells produced a selective enhancement of single whole-cell current amplitudes. No other pharmacological properties (Hill slope, EC50, or diazepam sensitivity) of the expressed alpha 1 beta 1 gamma 2S GABARs were modified. The GABAR current enhancement in C alpha 12 cells was blocked by substitution of a beta 1 subunit mutated at the PKA consensus phosphorylation site, Ser409 [beta 1(S409A)], for the wild-type beta subunit. Interestingly, enhancement was specific for GABARs containing all three subunits, because it was not seen after expression of alpha 1 beta 1 or alpha 1 beta 1 (S409A) GABAR subunit combinations. Single-channel conductance and gating properties were not different for alpha 1 beta 1 gamma 2S or alpha 1 beta 1 (S409A) gamma 2S GABARs expressed in each cell line, suggesting that PKA did not enhance whole-cell currents by altering these properties of GABARs. These results suggested that unlike acute application of PKA, which has been shown to produce a decrease in GABAR current, chronic elevation of PKA activity can result in enhancement of GABAR currents. More importantly, this effect occurred only with GABARs composed of alpha 1 beta 1 gamma 2S subunits and not alpha 1 beta 1 subunits and was mediated by a single amino acid residue (Ser409) of the beta 1 subunit.  相似文献   

3.
This study was conducted to determine the mechanism of arachidonic acid (AA) release elicited by phenylephrine (PHE) stimulation of alpha adrenergic receptor (AR), and its modulation by cyclic adenosine 3',5'-monophosphate (cAMP) in Rat-1 fibroblasts (R-1Fs) transfected with the alpha-1A, alpha-1B or alpha-1D AR. PHE increased AA release and also caused a marked accumulation of cAMP in R-1Fs expressing the alpha-1 AR subtypes, but not in those transfected with vector alone. PHE also enhanced phospholipase D (PLD), but not phospholipase A2 (PLA2) activity. The increase in PHE-induced AA release, PLD activity and cAMP accumulation differed among the various alpha AR subtypes with: alpha-1A > alpha-1B > alpha-1D AR. The effect of PHE to increase AA release was attenuated by C2-ceramide, an inhibitor of PLD; propranolol, a phosphatidate phosphohydrolase inhibitor; and RHC-80267, a diacylglycerol lipase inhibitor in R-1Fs expressing the alpha-1A AR. Forskolin, which activates adenylyl cyclase, increased cAMP accumulation and inhibited PHE-induced AA release and PLD activity in alpha-1A-AR-expressing R-1Fs. 8-(4-chlorophenyl-thio)-cAMP, a nonhydrolyzable analog of cAMP, also attenuated the rise in AA release and PLD activity elicited by PHE in these cells. In contrast, SQ 22536, an adenylyl cyclase inhibitor, and KT 5720, a protein kinase A inhibitor, increased PHE-induced AA release and PLD activity in R-1Fs expressing the alpha-1A AR. These data suggest that the alpha-1A, alpha-1B and alpha-1D ARs are coupled to PLD activation and cAMP accumulation. Moreover, PHE promotes AA release in R-1Fs expressing the alpha-1A AR through PLD activation. Furthermore, cAMP generated by alpha-1A AR stimulation acts as an inhibitory modulator of PLD activity and AA release via protein kinase A.  相似文献   

4.
We previously showed that substitution of a glycine residue for the palmitoylated cysteine 341 of the human beta2-adrenergic receptor (Gly341beta2AR), increases the basal level of the receptor phosphorylation and reduces its ability to functionally interact with Gs. In the present study, we show that additional mutation of serines 345 and 346 (Ala345,346Gly341beta2AR) restored normal phosphorylation and receptor-Gs coupling, thus suggesting that the increased phosphorylation of this site, rather than the lack of palmitoylation per se, is responsible for the poor coupling of the unpalmitoylated receptor. This is supported by the observation that chemical depalmitoylation of purified beta2AR did not affect the ability of the receptor to stimulate adenylyl cyclase in reconstitution assays. Furthermore, mutation of Ser345,346 in a wild type receptor background (Ala345,346beta2AR) significantly decreased the rate of agonist-promoted desensitization of the receptor-stimulated adenylyl cyclase activity, supporting a role for this phosphorylation site in regulating the functional coupling of the receptor. Since serines 345 and 346 are located in a putative cyclic AMP-dependent protein kinase (PKA) phosphorylation site immediately downstream of the palmitoylated cysteine 341, the hypothesis that the accessibility of this site may be regulated by the receptor palmitoylation state was further assessed in vitro. In membrane phosphorylation assays, Gly341beta2AR was found to be a better substrate for PKA than the wild type receptor, thus supporting the notion that palmitoylation restrains access of the phosphorylation site to the enzyme. Taken together, the data demonstrate that palmitoylation of cysteine 341 controls the phosphorylation state of the PKA site located in the carboxyl tail of the beta2AR and by doing so modulates the responsiveness of the receptor.  相似文献   

5.
U46619, a thromboxane A2 mimetic, caused tyrosine phosphorylation of several proteins in rabbit platelets. Among them, 42 kDa protein was identified as a mitogen-activated protein kinase (MAPK). U46619 activated MAPK in a concentration-dependent manner, measured by incorporation of 32P to a specific substrate for MAPK. U46619 also liberated [3H] arachidonic acid in a concentration-dependent manner. The U46619-induced MAPK activation and [3H]arachidonic acid liberation were inhibited by SQ29548 and by the removal of external Ca2+ ions. This is a first demonstration that TXA2 activates MAPK accompanied with arachidonic acid liberation in rabbit platelets.  相似文献   

6.
Arachidonic acid (AA) and certain prostaglandins appear to antagonize GABAA receptors in synaptoneurosomes [18]. We report here that perfusing hippocampal slices with AA or prostaglandin F2 alpha diminishes evoked IPSP conductance and increases CA1 pyramidal cell input resistance. The effects of the two compounds were similar, though not identical, in time course, magnitude, and response to washout. These findings suggest that high levels of AA and its metabolites may bias neurons towards excitation.  相似文献   

7.
Arachidonic acid reverses the increase in cyclic AMP levels of washed human platelets exposed to prostaglandin (PG)I2, under conditions where the PGH2 analogue U46619 is ineffective. This effect of arachidonic acid was inhibited by aspirin, a cyclooxygenase inhibitor, but not by the thromboxane (Tx) synthase inhibitor Ridogrel, which induces, by inhibiting the conversion of PGH2 into TxA2, an overproduction of PGE2, PGD2 and PGF2 alpha. Addition of PGE2 or PGF2 alpha, which share a receptor with PGI2, to washed human platelets also induced a decrease in cyclic AMP levels, but PGD2, which interacts with a different receptor, had no effect. Thus neither PGD2, PGG2, PGH2, TxA2 nor TxB2 formed from arachidonic acid via the cyclooxygenase pathway is involved in the decrease in cyclic AMP levels. These findings were confirmed using forskolin, a diterpene from the labdane family, which enhanced the formation of cyclic AMP synergistically with the PGs. Also, arachidonic acid, unlike U46619, is able to reverse the inhibition of platelet aggregation by PGI2 after a lag phase of about 4 min. Our data indicate that arachidonic acid decreased cyclic AMP levels through its cyclooxygenase metabolites PGE2 and PGF2 alpha probably interacting competitively with the receptor of PGI2. In addition, intracellular cyclic AMP levels and the degree of aggregation of platelets by arachidonic acid seem to be inversely correlated.  相似文献   

8.
Formation of prostaglandin F2Alpha in the cow and guinea pig uterus microsomes was studied using 14C-labeled arachidonic acid and prostaglandin H2. The total conversion of arachidonic acid was of a low order and underwent fluctuations during the estrous cycle of the guinea pig, being highest towards the end of the cycle. Injections of beta-estradiol-3-benzoate also resulted in higher activity of the uterine prostaglandin synthetase. The uterine prostaglandin synthesizing system appeared to differ in several respects from that present in seminal vesicles, with regard to the proportions of the products formed and the effects of various agents, e.g. reduced glutathione. An inhibiting factor which supressed the fatty acid cyclo-oxygenase was found to be present in uterine preparations. Prostaglandin endoperoxide (prostaglandin H2) was very efficiently reduced to prostaglandin F2alpha by cow and guinea-pig uterus microsomes. Prostaglandin G2 also gave rise to prostaglandin F2alpha. Prostaglandin E2, on the other hand, was not reduced. Both the inhibiting factor and the endoperoxide reducing activity are likely to be parts of a highly specialized mechanism that modulates prostaglandin F2alpha formation in the uterus.  相似文献   

9.
A cDNA clone of prostaglandin (PG) E receptor EP1 subtype (rEP1) was isolated from a rat uterus cDNA library. It encodes 405 amino acid residues with seven transmembrane-spanning domains and couples to Ca2+ mobilization. In addition, three cDNA clones encoding a variant form of rEP1 were isolated. The open reading frame can code a 366-amino acid protein carrying a specific change of 49 amino acids from the middle of transmembrane segment VI to COOH terminus; it possesses a transmembrane segment VII-like structure lacking an intracellular COOH-terminal tail. Southern blot analysis of rat genomic DNA and genomic polymerase chain reaction demonstrated that these cDNAs were derived from a single copy gene. Northern blot analysis and ribonuclease protection assay revealed that both rEP1 and rEP1-variant receptor mRNAs were highly expressed in the kidney. Immunoblot with an antibody directed toward the specific region of rEP1-variant receptor showed that rEP1-variant receptor protein was expressed in the membrane of the kidney and Chinese hamster ovary (CHO) cells transfected with rEP1-variant cDNA. Thus, the rEP1-variant receptor is translated from mRNA which is not spliced at nucleotide position 952 in the segment VI transmembrane region. rEP1-variant receptor retained the ligand binding activity with affinity and specificity similar to rEP1 receptor, but lost the coupling of signal transduction systems by itself. However, when rEP1-variant receptor was stably co-expressed with rEP1 receptor in CHO cells, the Ca2+ mobilization mediated by EP1 receptor was significantly suppressed. Furthermore, when rEP1-variant receptor was expressed in CHO cells, cAMP formation by activation of endogenous EP4 receptor was strongly blocked. These results suggest that the rEP1-variant receptor may affect the efficiency of signal coupling of PGE receptors and attenuate the action of PGE2 on tissues.  相似文献   

10.
Preferential phosphorylation of specific proteins by cAMP-dependent protein kinase (PKA) may be mediated in part by the anchoring of PKA to a family of A-kinase anchor proteins (AKAPs) positioned in close proximity to target proteins. This interaction is thought to depend on binding of the type II regulatory (RII) subunits to AKAPs and is essential for PKA-dependent modulation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor, the L-type Ca2+ channel, and the KCa channel. We hypothesized that the targeted disruption of the gene for the ubiquitously expressed RIIalpha subunit would reveal those tissues and signaling events that require anchored PKA. RIIalpha knockout mice appear normal and healthy. In adult skeletal muscle, RIalpha protein levels increased to partially compensate for the loss of RIIalpha. Nonetheless, a reduction in both catalytic (C) subunit protein levels and total kinase activity was observed. Surprisingly, the anchored PKA-dependent potentiation of the L-type Ca2+ channel in RIIalpha knockout skeletal muscle was unchanged compared with wild type although it was more sensitive to inhibitors of PKA-AKAP interactions. The C subunit colocalized with the L-type Ca2+ channel in transverse tubules in wild-type skeletal muscle and retained this localization in knockout muscle. The RIalpha subunit was shown to bind AKAPs, although with a 500-fold lower affinity than the RIIalpha subunit. The potentiation of the L-type Ca2+ channel in RIIalpha knockout mouse skeletal muscle suggests that, despite a lower affinity for AKAP binding, RIalpha is capable of physiologically relevant anchoring interactions.  相似文献   

11.
Although the protein kinase inhibitors (PKIs) are known to be potent and specific inhibitors of the catalytic (C) subunit of cAMP-dependent protein kinase, little is known about their physiological roles. Glutamate 203 of the C alpha isoform (C alpha E203) has been implicated in the binding of the arginine 15 residue of the skeletal isoform of PKI (PKI alpha R15) (Knighton, D. R., Zheng, J., Ten Eyck, L. F., Xuong, N., Taylor, S.S., and Sowadski, J. M. (1991) Science 253, 414-420). To investigate the role of C alpha E203 in the binding of PKI and in vivo C-PKI interactions, in vitro mutagenesis was used to change the C alpha E203 codon of the murine C alpha cDNA to alanine and glutamine codons. Initially, the C alpha E203 mutant proteins were expressed and purified from Escherichia coli. C alpha E203 is not essential for catalysis as all of the C subunit mutants were enzymatically active. The mutation of Glu203 did increase the apparent Km for Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) severalfold but did not affect the apparent Km for ATP. The Vmax(app) was not affected by the mutation of C alpha E203. The mutation of C alpha E203 compromised the ability of PKI alpha (5-24), PKI alpha, and PKI beta to inhibit phosphotransferase activity. PKI alpha was altered using in vitro mutagenesis to probe the role of Arg15 in interacting with C alpha E203. The PKI alpha R15A mutant was reduced in its inhibition of C alpha. Preliminary studies of the expression of these C alpha mutants in COS cells gave similar results. These results suggest that the C alpha E203 mutants may be useful in assessing the role of PKI in vivo.  相似文献   

12.
Altered hepatic expression of apolipoproteins occurs during the acute phase response. Here we examined whether the acute phase response alters extra hepatic expression of apolipoproteins. Syrian hamsters were injected with endotoxin (LPS), tumor necrosis factor (TNF), interleukin (IL)-1, or the combination of TNF + IL-1 and mRNAs for serum amyloid A (apoSAA), apolipoprotein (apo) J, apo E. apo A-I, and apo D, were analyzed. LPS increased mRNA levels for apoSAA in all tissues examined. LPS and TNF + IL-1 increased mRNA levels for apo J in kidney, heart, stomach, intestine, and muscle. Individually, TNF and IL-1 were less potent than the combination of the two cytokines. LPS decreased mRNA levels for apo E in all tissues, except for mid and distal intestine. TNF and IL-1 were less effective than LPS. LPS, TNF + IL-1 and TNF decreased mRNA levels for apo A-I in duodenum. mRNA for apo D decreased in heart, were unchanged in brain and increased in muscle, following LPS. The widespread extra hepatic regulation of the apolipoproteins during the acute phase response may be important for the alterations in lipid metabolism that occur during infection and inflammation as well as the immune response.  相似文献   

13.
We found previously that stimulation of c-fos and c-myc mRNA expression are early events in hydrogen peroxide-induced growth in rat aortic smooth muscle (RASM) cells. In the present study, we investigated the role of phospholipase A2 (PLA2) and protein kinase C (PKC) in mediating hydrogen peroxide-induced c-fos mRNA expression in RASM cells. Mepacrine and p-bromophenacylbromide, potent inhibitors of PLA2 activity, blocked hydrogen peroxide-induced c-fos mRNA expression. Arachidonic acid, a product of PLA2 activity, stimulated the expression of c-fos mRNA with a time course similar to that of hydrogen peroxide. PKC down-regulation attenuated both hydrogen peroxide and arachidonic acid-induced c-fos mRNA expression by 50%. Nordihydroguaiaretic acid (a lipoxygenase-cytochrome P450 monooxygenase inhibitor) significantly inhibited both hydrogen peroxide and arachidonic acid-induced c-fos mRNA expression, whereas indomethacin (a cyclooxygenase inhibitor) had no effect. Together, these findings indicate that 1) hydrogen peroxide-induced c-fos mRNA expression is mediated by PLA2-dependent arachidonic acid release, 2) both PKC-dependent and independent mechanisms are involved in hydrogen peroxide-induced expression of c-fos mRNA and 3) arachidonic acid metabolism via the lipoxygenase-cytochrome P450 monooxygenase pathway appears to be required for hydrogen peroxide-induced expression of c-fos mRNA.  相似文献   

14.
The inflammatory cytokine interleukin 1beta (IL-1beta) induces both cyclooxygenase-2 (Cox-2) and the inducible nitric-oxide synthase (iNOS) with increases in the release of prostaglandins (PGs) and nitric oxide (NO) from glomerular mesangial cells. However, the intracellular signaling mechanisms by which IL-1beta induces iNOS and Cox-2 expression is obscure. Our current studies demonstrate that IL-1beta produces a rapid increase in p38 mitogen-activated protein kinase (MAPK) phosphorylation and activation. Serum starvation and SC68376, a drug which selectively inhibits p38 MAPK in mesangial cells, were used to investigate whether p38 MAPK contributes to the signaling mechanism of IL-1beta induction of NO and PG synthesis. Serum starvation and SC68376 selectively inhibited IL-1beta-induced activation of p38 MAPK. Both SC68376 and serum starvation enhanced NO biosynthesis by increasing iNOS mRNA expression, protein expression, and nitrite production. In contrast, both SC68376 and serum starvation suppressed PG release by inhibiting Cox-2 mRNA, protein expression, and PGE2 synthesis. These data demonstrate that IL-1beta phosphorylates and activates p38 MAPK in mesangial cells. The activation of p38 MAPK may provide a crucial signaling mechanism, which mediates the up-regulation of PG synthesis and the down-regulation of NO biosynthesis induced by IL-1beta.  相似文献   

15.
16.
Current work has shown that spinal excitatory amino acid receptor activation can evoke physiological phenomena that may be mediated by the subsequent depolarization of glutamate-containing neurons and the activation of cyclo-oxygenase systems. To investigate this phenomenon, rats were implanted with lumbar intrathecal loop dialysis catheters for perfusion and an additional lumbar intrathecal PE-10 catheter for drug delivery. Two days after implantation, kainic acid (1 microgram) was injected intrathecally under light (0.5%) halothane anaesthesia and the spinal release of several amino acids and prostaglandin E2 was examined. Resting concentrations (mean expressed as pmol/25 microliters) of glutamate (89), aspartate (9), serine (387), glycine (597), taurine (185), asparagine (113) and prostaglandin E2 (0.43) were observed. Intrathecal kainic acid produced significant signs of arousal in the rat and evoked a significant increase (mean +/- S.E.M. of % baseline concentration) in aspartate (445 +/- 127%) and glutamate (221 +/- 35%). Prostaglandin E2 concentration was increased in the second post-injection sample (180 +/- 36%). Intrathecal pretreatment with 6-cyano-7-nitroquinoxaline-2, 3-dione (3 micrograms or 10 micrograms), a non-N-methyl-D-aspartate receptor antagonist, blocked amino acid but not prostaglandin E2 release after kainic acid injection. Pretreatment with MK-801 (10 micrograms; non-competitive NMDA receptor antagonist) had no significant effect on evoked release of amino acids or prostaglandin E2. Indomethacin (10 micrograms, a cyclo-oxygenase inhibitor) pretreatment significantly decreased baseline prostaglandin E2 release in control animals (61 +/- 6%) and suppressed kainic acid-evoked aspartate, taurine and prostaglandin E2 release, but had no effect on the concentration of glutamate after kainic acid injection. These data suggest that activation of spinal kainic acid receptors provides a powerful stimulus for secondary excitatory amino acid release and, consistent with the concurrent appearance of prostaglandin E2, that this release is potentiated by the release of a cyclo-oxygenase product.  相似文献   

17.
A variety of pharmacologic agents have been known to induce pustular psoriasis. We describe a patient with a positive personal and family history of psoriasis who developed an extensive annular pustular eruption 3 weeks after starting hydroxychloroquine (Plaquenil) for arthritis. The drug was discontinued, and she received 3 weeks of systemic and topical corticosteroids; in spite of the therapeutic intervention, showers of new lesions appeared daily, and progressed to involve 75% of the body. The development of new lesions stopped, and the older lesions began to clear after one dose of 7.5 mg of methotrexate. Subsequently, methotrexate therapy was stopped because of mild transaminase elevation; the pustular lesions then flared. New lesions stopped appearing after four doses of weekly methotrexate. The patient remains clear of lesions 6 months later.  相似文献   

18.
We show here that treatment of 3T3-L1 cells with leukemia inhibitory factor (LIF) stimulates the activation of mitogen-activated protein kinase kinase (MAPKK), mitogen-activated protein kinase (MAPK), and S6 protein kinase (S6K) activities both in a time- and dose-dependent manner. A single peak of MAPKK activity, four peaks of activity against the S6 synthetic peptide, RRLSSLRA (S6 peptide), and three distinct peaks toward myelin basic protein (MBP) were observed after Mono-Q chromatography of LIF-stimulated cell extracts. Two of the MBP kinase activities correlated with the stimulation of extracellular signal-regulated kinases 1 and 2. Interestingly, down-regulation of protein kinase C (PKC) by chronic treatment of 3T3-L1 cells with phorbol ester was found to attenuate, but not block, the LIF-mediated stimulation of MAPKK, MAPK, and S6K activities in 3T3-L1 cells. Treatment of 3T3-L1 cells with epidermal growth factor increased MAPKK, MAPK, and S6K activities to a similar extent as LIF, but this activation was not attenuated by down-regulation of PKC. Our results suggest that the full activation of the MAPK cascade by LIF may require inputs from multiple signaling pathways, one of which is dependent upon the presence of functional PKC.  相似文献   

19.
Arachidonic acid (AA) can be metabolized to a variety of lipid mediators including prostaglandins (PGE), and hydroxyeicosatetraenoic acids (HETE) by cyclooxygenase, lipoxygenase and cytochrome P450-dependent monooxygenase enzymatic pathways. Traditional experimental procedures to quantify these lipid mediators require purification, often by high performance liquid chromatography (HPLC), prior to derivatization for gas chromatography/mass spectrometry (GC/MS) analysis. This paper describes a rapid and simple technique for the simultaneous quantitative analysis of PGE2, 12-HETE, and AA by HPLC/electrospray ionization mass spectrometry on cultured human dermal fibroblast supernatants. Extension of the method to analyse 5-HETE and 15-HETE was investigated. The advantages of this method include minimal sample preparation and elimination of the problem associated with thermal stability for GC/MS analysis. A detection limit of 20pg on column for PGE2 and 5pg on column for 12-HETE and AA was determined.  相似文献   

20.
We have recently established that local exposure to a 929.2 MHz electromagnetic near-field, used for cellular phones, does not promote rat liver carcinogenesis in a medium-term bioassay system. In the present study, a 1.439 GHz electromagnetic near-field (EMF), another microwave band employed for cellular phones in Japan, was similarly investigated. Time division multiple access (TDMA) signals for the Personal Digital Cellular (PDC) Japanese cellular telephone standard system were directed to rats through a quarter-wavelength monopole antenna. Numerical dosimetry showed that the peak SARs within the liver were 1.91-0.937 W/kg, while the whole-body average specific absorption rates (SARs) were 0.680-0.453 W/kg, when the time-averaged antenna radiation power was 0.33 W. Exposure was for 90 min a day, 5 days a week, over 6 weeks, to male F344 rats given a single dose of diethylnitrosamine (200 mg/kg, i.p.) 2 weeks previously. At week 3, all rats were subjected to a two-thirds partial hepatectomy. At week 8, the experiment was terminated and the animals were killed. Carcinogenic potential was scored by comparing the numbers and areas of the induced glutathione S-transferase placental form (GST-P)-positive foci in the livers of exposed (48) and sham-exposed rats (48). Despite increased serum levels of corticosterone, adrenocorticotropic hormone (ACTH) and melatonin, the numbers and the areas of GST-P-positive foci were not significantly altered by the exposure. These findings clearly indicated that local body exposure to a 1.439 GHz EMF, as in the case of a 929.2 MHz field, has no promoting effect on rat liver carcinogenesis in the present model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号