首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of power sources》2002,103(2):188-200
Two, simple, solid-oxide fuel-cell (SOFC) power systems fed by hydrogen and methane, respectively, are examined. While other models available in the literatures focus on complicated hybrid SOFC and gas-turbine (GT) power systems, this study focuses on simple SOFC power systems with detailed thermodynamic modeling of the SOFC. All performance-related parameters of the fuel-cell such as respective resistivity of the components, anode and cathode exchange current density, limiting current density, flow diffusivity, etc. are all expressed as a function of temperature, while the flow through of each nodes of the system is described as a function of thermodynamic state. Full analysis of the energy and exergy at each node of the system is conducted and their respective values are normalized by the lower heating value (LHV) of the fuel and its chemical exergy, respectively. Thus, the normalized electrical energy outputs directly indicate the first law and second law efficiencies, respectively, of the fuel-cell power systems.  相似文献   

2.
This paper develops a relatively simple model that is intended to rapidly evaluate design configuration and operating conditions for tubular anode-supported solid-oxide fuel-cell (SOFC) stacks. Heat is removed from the SOFC tubes by a combination of convection and radiation. Heat is convected to air that circulates outside the SOFC tubes and radiated to a surrounding cylindrical wall. The tubes are assumed to be arranged in hexagonal arrays in which the distance between tubes centers form equilateral triangles. The paper presents new configuration-factor formulas that are needed to represent arrays of staggered cylinders. The configuration factors are derived for long cylinders using the crossed-string method. These configuration factors have general utility beyond the application to fuel-cell systems. The model is applied to a particular cell and stack system and used to evaluate the effects of a range of design and operating conditions.  相似文献   

3.
A power plant based on chemical-looping combustion offers both a possibility of high net power efficiency and separation of the greenhouse gas CO2. This is due to the way the oxidation of the fuel takes place. Instead of oxidizing the fuel with oxygen from the combustion air, the fuel is oxidized by an oxygen carrier, i.e., an oxygen-containing compound. The oxygen carriers that have been suggested in previous studies are metal oxides like NiO, Fe2O3 and Mn3O4. The reduced oxygen carrier is in the next step reoxidized by air in a second reactor and then recirculated to the first reactor. In this way, fuel and air are never mixed and the fuel oxidation products CO2 and water leave the system undiluted by air. All that is needed to get an almost pure CO2 product is to condense the water vapour and remove the liquid water.Chemical-looping combustion (CLC) is also claimed to reduce the fuel exergy destruction in the overall reaction of combustion of the fuel. This gives a possibility to increase the net power efficiency.This paper gives an introduction to chemical-looping combustion. Results from simulations and a detailed exergy analysis of two different CLC gas turbine (GT) systems are also presented. The first system utilizes methane as a fuel and NiO as oxygen carrier. The second system utilizes a fuel gas mixture consisting mainly of CO and H2, simulating a fuel gas from for instance coal gasification. Results for this system are given for simulations with both NiO and Fe2O3 as oxygen carrier. The two systems are compared to comparable simulated systems with conventional combustion of the same fuel. The exergy analysis shows that the irreversibilities generated upon combustion of the fuel are reduced. The net power efficiency of the CLC–GT systems is similar or higher than for the corresponding GT systems with conventional combustion. The net power efficiency of CLC systems could be even further increased if the exergy remaining in the exhaust could be utilized in an efficient way.  相似文献   

4.
In the present work, microstructural and transport properties of a three-dimensional (3D) microstructure of lanthanum strontium manganite (LSM) are deduced using dual-beam focused ion beam-scanning electron microscopy (FIB-SEM) facility. A series of two-dimensional (2D) cross-sectional images are collected from the LSM sample using FIB-SEM and then reconstructed to 3D structures from the 2D images in a systematic approach. For the first time, the effect of different image processing steps including threshold value, median filter radius, morphological operators, surface triangulation, smoothing filter, etc., on porosity, internal surface area, electronic conductivity and diffusivity are studied. Variation of 33% and 25% on porosity ? and internal surface area S, respectively is observed because of improper selection of threshold value, median filter radius, and morphological operator. The number of triangular surfaces used in 3D reconstructions also varied the porosity ? and internal surface area S by 14.5% and 4.4%, respectively.Computational domains for calculating effective transport properties are generated using body-fitted cut-cell based finite volume meshes on reconstructed 3D volumes. The normalized effective transport properties are computed on computational domains reconstructed by the FIB-SEM as well as by a numerical model. For the FIB-SEM reconstruction case, the normalized effective properties in z-direction are 25-44% smaller than those properties in x and y directions. This difference is significant and reveals the anisotropy in FIB-SEM reconstructed volume compared to numerically reconstructed volume. The presence of large crater, milling direction and smaller 3D FIB-SEM reconstructed volume could be the main reasons for this local anisotropy.  相似文献   

5.
《Exergy》2002,2(4):259-265
Exergy analysis of heat pump—air conditioner systems has been carried out. The irreversibilities due to heat transfer and friction have been considered. The coefficient of performance based on the first law of thermodynamics as a function of various parameters, their optimum values, and the efficiency and coefficient of performance based on exergy analysis have been derived. Based on the exergy analysis, a simulation program has been developed to simulate and evaluate experimental systems. The simulation of a domestic heat pump—air conditioner of 959 W nominal power (Matsushita room air conditioner model CS-XG28M) is then carried out using experimental data. It is found that COP based on the first law varies from 7.40 to 3.85 and the exergy efficiency from 0.37 to 0.25 both a decreasing function of heating or cooling load. The exergy destructions in various components are determined for further study and improvement of its performance.  相似文献   

6.
Exergy analysis of a single-effect lithium bromide/water absorption system for cooling and heating applications is presented in this paper. Exergy loss, enthalpy, entropy, temperature, mass flow rate and heat rate in each component of the system are evaluated. From the results obtained it can be concluded that the condenser and evaporator heat loads and exergy losses are less than those of the generator and absorber. This is due to the heat of mixing in the solution, which is not present in pure fluids. Furthermore, a simulation program is written and used for the determination of the coefficient of performance (COP) and exergetic efficiency of the absorption system under different operating conditions. The results show that the cooling and heating COP of the system increase slightly when increasing the heat source temperature. However, the exergetic efficiency of the system decreases when increasing the heat source temperature for both cooling and heating applications.  相似文献   

7.
Fuel cells is a rapidly evolving technology with applications in many industries including transportation, and both portable and stationary power generation. The viability, efficiency and robustness of fuel-cell systems depend strongly on optimization and control of their operation. This paper presents the development of an integrated optimization and control tool for Proton Exchange Membrane Fuel-Cell (PEMFC) systems. Using a detailed simulation model, a database is generated first, which contains steady-state values of the manipulated and controlled variables over the full operational range of the fuel-cell system. In a second step, the database is utilized for producing Radial Basis Function (RBF) neural network “meta-models”. In the third step, a Non-Linear Programming Problem (NLP) is formulated, that takes into account the constraints and limitations of the system and minimizes the consumption of hydrogen, for a given value of power demand. Based on the formulation and solution of the NLP problem, a look-up table is developed, containing the optimal values of the system variables for any possible value of power demand. In the last step, a Model Predictive Control (MPC) methodology is designed, for the optimal control of the system response to successive sep-point changes of power demand. The efficiency of the produced MPC system is illustrated through a number of simulations, which show that a successful dynamic closed-loop behaviour can be achieved, while at the same time the consumption of hydrogen is minimized.  相似文献   

8.
In this paper,a novel system integrating chemical-looping hydrogen generation(CLH)system and solid oxide fuel cell(SOFC)has been proposed.This new methane-fuelled energy system was investigated with energy balance and exergy analysis.CLH produces the hydrogen as the fuel of the SOFC,and the Fe O and Fe3O4 are selected as the looping material.Waste heat from the SOFC is absorbed by the CLH and converted to chemical energy through the reduction reaction of CLH.Owing to the cascade utilization of the fuel between the CLH and SOFC,the net efficiency of this novel system can achieve 62.8%considering CO2separation,more than 10 percentage points higher than a methane reforming fuelled SOFC system.Meanwhile,by using the CLH to produce the hydrogen,the CO2can be recovered without an energy penalty.Through the analysis of the graphical exergy,the cascade utilization of waste heat and the high-efficiency hydrogen production is the main reason of high performance.This novel system also has the advantage of CO2capture without energy penalty,so this combined system is an advantaged method to accomplish the efficient utilization of methane.  相似文献   

9.
10.
A thermodynamic theory of exergy analysis for a stationary flow system having several heat inputs and outputs at different temperature levels is presented. As a new result a relevant reference temperature of the surroundings is derived for each case. Also a general formula which combines exergy analysis with a modified Carnot efficiency is derived. The results are illustrated by numerical examples for mechanical multi-circuit heat pump cycles, for a Brayton process and for an absorption heat pump.  相似文献   

11.
《Journal of power sources》2006,157(2):799-808
The limitations of electric vehicles equipped with electrochemical batteries justify strong research interest for new solutions, based on hydrogen fuel-cell technology that are able to improve vehicle range, and reduce battery recharging time, while maintaining the crucial advantages of high efficiency and local zero emissions. The best working of a fuel-cell propulsion system, in terms of optimum efficiency and performance, is based on specific strategies of energy management, that are designed to regulate the power flows between the fuel cells, electric energy-storage systems and electric drive during the vehicle mission. An experimental study has been carried out on a small-size electric propulsion system based on a 2.5-kW proton exchange membrane fuel cell stack and a 2.5-kW electric drive. The fuel-cell system has been integrated into a powertrain comprising a dc–dc converter, a lead–acid battery pack, and brushless electric drive. The experiments are conducted on a test bench that is able to simulate the vehicle behaviour and road characteristics on specific driving cycles. The experimental runs are carried out on the European R40 driving cycle using different energy-management procedures and both dynamic performance and energy consumption are evaluated.  相似文献   

12.
A two-dimensional, axisymmetric transient computational fluid dynamics model is developed for an intermediate temperature micro-tubular solid oxide fuel cell (SOFC), which incorporates mass, species, momentum, energy, ionic and electronic charge conservation. In our model we also take into account internal current leak which is a common problem with ceria based electrolytes. The current density response of the SOFC as a result of step changes in voltage is investigated. Time scales associated with mass transfer and heat transfer are distinguished in our analysis while discussing the effect of each phenomenon on the overall dynamic response. It is found that the dynamic response is controlled by the heat transfer. Dynamic behavior of the SOFC as a result of failure in fuel supply is also investigated, and it is found that the external current drops to zero in less than 1 s.  相似文献   

13.
In the last decades, heat recovery systems have received much attention due to the increase in fuel cost and the increase in environmental issues. In this study, different heat recovery systems for a cement plant are compared in terms of electricity generation and exergy analysis. The heat sources are available in high temperature (HT) and low temperature (LT). For the HT section a dual pressure Rankine cycle, a simple dual pressure Organic Rankine Cycle (ORC) and a regenerative dual pressure ORC are compared. Also, for the LT section, a simple ORC is compared with transcritical carbon dioxide cycle. To find the best system, an optimisation algorithm is applied to all proposed cycles. The results show that for the HT section, regenerative ORC has the highest exergy efficiency and has the capability of producing nearly 7?MW electricity for a cement factory with the capacity of 3400 ton per day. The main reason for this is introducing the regenerative heat exchanger to the cycle. For the LT section, ORC showed a better performance than the CO2 cycle. It is worth mentioning that the generated power in this section is far lower than that of the HT section and is equal to nearly 300?kW.  相似文献   

14.
The present study undertakes an exergy and reliability analysis of wind turbine systems and applies to a local one in Turkey: the exergy performance and reliability of the small wind turbine generator have been evaluated in a demonstration (1.5 kW) in Solar Energy Institute of Ege University (latitude 38.24 N, longitude 27.50 E), Izmir, Turkey. In order to extract the maximum possible power, it is important that the blades of small wind turbines start rotating at the lowest possible wind speed. The starting performance of a three-bladed, 3 m diameter horizontal axis wind turbine was measured in field tests. The average technical availability, real availability, capacity factor and exergy efficiency value have been analyzed from September 2002 to November 2003 and they are found to be 94.20%, 51.67%, 11.58%, and 0–48.72%, respectively. The reliability analysis has also been done for the small wind turbine generator. The failure rate is high to an extent of 2.28×10−4 h−1 and the factor of reliability is found to be 0.37 at 4380 h. If failure rate can be decreased, not only this system but also other wind turbine systems of real availability, capacity factor and exergy efficiency will be improved.  相似文献   

15.
《Journal of power sources》2006,157(2):666-673
A hydrogen fuelled, 30 W proton exchange membrane fuel-cell (PEMFC) system is presented that is able to operate at an ambient temperature between −20 and 40 °C. The system, which comprises the fuel-cell stack, pumps, humidifier, valves and blowers is fully characterized in a climatic chamber under various ambient temperatures. Successful cold start-up and stable operation at −20 °C are reported as well as the system behaviour during long-term at 40 °C. A simple thermal model of the stack is developed and validated, and accounts for heat losses by radiation and convection. Condensation of steam is addressed as well as reaction gas depletion. The stack is regarded as a uniform heat source. The electrochemical reaction is not resolved. General design rules for the cold start-up of a portable fuel-cell stack are deduced by the thermal model and are taken into consideration for the design. The model is used for a comparison between active-assisted cold start-up procedures with a passive cold start-up from temperatures below 0 °C. It is found that a passive cold start-up may not be the most efficient strategy. Additionally, the influence of different stack concepts on the start-up behaviour is analysed by the thermal model. Three power classes of PEMFC stacks are compared: a Ballard Mk902 module for automotive applications with 85 kW, the forerunner stack Ballard Mk5 (5 kW) for medium power applications, and the developed OutdoorFC stack (30 W), for portable applications.  相似文献   

16.
In a global energetic context characterized by the increasing demand of oil and gas, the depletion of fossil resources and the global warming, more efficient energy systems and, consequently, innovative energy conversion processes are urgently required. A possible solution can be found in the fuel cells technology coupled with classical thermodynamic cycle technologies in order to make hybrid systems able to achieve high energy/power efficiency with low environmental impact. Moreover, due to the synergistic effect of using a high temperature fuel cell such as solid oxide fuel cell (SOFC) and a recuperative gas turbine (GT), the integrated system efficiency can be significantly improved. In this paper a steady zero dimensional model of a SOFC/GT hybrid system is presented. The core of the work consists of a performance analysis focused on the influence of the GT part load functioning on the overall system efficiency maintaining the SOFC power set to the nominal one. Also the proper design and management of the heat recovery section is object of the present study, with target a global electric efficiency almost constant in part load functioning respect to nominal operation. The results of this study have been used as basis to the development of a dynamic model, presented in the following part of the study focused on the plant dynamic analysis.  相似文献   

17.
Solid Oxide Fuel Cells (SOFCs) are of great interest nowadays. The feature of SOFCs makes them suitable for hybrid systems because they work high operating temperature and when combined with conventional turbine power plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power system model is developed. Two models have been developed based on simple thermodynamic expressions. The simple models are used in the preliminary part of the study and a more realistic based on the performance maps. A comparative study of the simulated configurations, based on an energy analysis is used to perform a parametric study of the overall hybrid system efficiency. Some important observations are made by means of a sensitivity study of the whole cycle for the selected configuration. The results of the selected model were compared to an earlier model from an available literature.  相似文献   

18.
The aim of the paper is to investigate possible improvements in the geometry design of a monolithic solid oxide fuel cells (SOFCs) through analysis of the entropy generation terms. The different contributions to the local rate of entropy generation are calculated using a computational fluid dynamic (CFD) model of the fuel cell, accounting for energy transfer, fluid dynamics, current transfer, chemical reactions and electrochemistry. The fuel cell geometry is then modified to reduce the main sources of irreversibility and increase its efficiency.  相似文献   

19.
This paper investigates the benefits of distributed hybrid power systems employing multiple fuel-cell vehicles. In earlier work, our optimization of hybrid power systems showed that a single fuel cell acting as backup power to guarantee energy sustainability operates for less than 3% of the time but incurs more than 16% of the system costs. Therefore, the system cost could be reduced when applying a fuel-cell vehicle to dynamically support twelve power stations. Here, we extend this idea by employing multiple fuel-cell vehicles to support more power stations. We develop a power management strategy and optimize the management parameters by the genetic algorithm. The results show a reduction of more than 21% by applying multiple fuel-cell vehicles in the distributed systems. Experiments also confirm the feasibility of using multiple fuel-cell vehicles. Based on the results, the proposed systems are deemed effective for reducing system costs while maintaining system sustainability.  相似文献   

20.
《Exergy》2002,2(2):78-86
An innovative method for the exergy efficiency calculation of a complex energy-intensive system with arbitrary structures is described in this paper. The method is based on a novel general equation to calculate the total system exergy efficiency, and on an exergy flow graph proposed by the authors. This approach allows a user to obtain not only the exergy efficiency of the total system, but also to show the relationship between the exergy efficiency of an individual element and that of the whole system. An example employing the method to the thermodynamic exergy analysis of a power plant is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号