首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
分析了当前普通水泥混凝土路面裂缝和断板的问题,在此基础上验证了不同掺量抗折剂的混凝土与基准混凝土的抗折强度和抗裂性能,随着抗折剂掺量的增加,混凝土抗折强度先增大后降低,当掺量3%时,混凝土抗折性能最大;通过应力强度因子分析验证,抗折剂掺量3%时,混凝土抗裂应力增进率达到最大值。  相似文献   

3.
杨晓东  尚建丽 《水泥》2003,(4):52-53
1试验研究试验研究采用水泥为:第1组P·O32.5R,第2组P·O42.5R,第3组P·O32.5。标准试验操作方法与不规范操作方法的检验结果对比如表1所示。表1强度测试结果对比方法组别3d抗折3d抗压28d抗折28d抗压标准方法第1组4.0/10019.1/1008.7/10045.1/100第2组5.3/10026.1/1008.8/10046.1/100第3组2.5/10013.4/1007.0/10035.1/100不规范操作①第1组3.8/9518.1/957.6/8740.5/90第2组5.…  相似文献   

4.
5.
本文从钢渣水泥入手,研究了水泥抗折强度与孔隙结构的关系,发现水泥抗折强度与浆体总孔隙率相关性不强,而与直径大于1000A的大孔数目密切相关。  相似文献   

6.
笔者从机械结构、控制电路和计算机软件等方面入手,设计、开发和研制成功了机电一体化的SYZ新型全自动水泥抗折强度试验机(简称水泥抗折机);并且可对已有电动抗折仪进行了改造,制成改造型全自动水泥抗折机。  相似文献   

7.
低水泥刚玉浇注料的高温抗折强度研究   总被引:3,自引:3,他引:0  
金从进  李泽亚 《耐火材料》2006,40(5):366-368
采用板状刚玉、电熔白刚玉、工业氧化铬微粉、α-Al2O3微粉、Secar71水泥、烧结尖晶石粉为原料,研究了水泥、α-Al2O3微粉、氧化铬微粉、尖晶石粉以及烧成温度对低水泥刚玉基浇注料高温抗折强度的影响。研究结果表明:烧成温度、水泥、尖晶石和α-Al2O3微粉对低水泥刚玉基浇注料的高温抗折强度影响较大。烧后膨胀越大,高温抗折强度越低;1700℃烧后试样的高温抗折强度高于1600℃烧后试样的高温抗折强度;控制加热永久线变化率,添加合适的水泥、α-Al2O3微粉和粒度细的尖晶石粉可以得到高温抗折强度高的试样。  相似文献   

8.
本文研究了废旧橡胶粉的粒径(20目、80目、120目)、掺量(2%、4%、6%、8%、10%)对水泥砂浆抗压强度、抗折强度的影响,通过对3d、7d、14 d、21 d、28 d抗压强度、抗折强度的对比,结果显示:当橡胶粒径相同时,橡胶粉掺量与水泥砂浆的抗压强度、抗折强度成反比;在橡胶粉掺量相同的条件下,橡胶粉粒径越小,则抗压强度及抗折强度下降越大.  相似文献   

9.
为了研究聚乙烯醇(PVA)纤维的掺量对水泥胶砂力学性能的影响,采用硫铝酸盐水泥、粉煤灰、硅灰、聚乙烯醇纤维等材料制备40 mm×40 mm×160 mm胶砂试件,通过流动度试验、抗折试验、抗压试验测试7组试件的力学性能。试验结果表明,随着纤维掺量的增加,胶砂的流动度逐渐降低。抗折、抗压试验中,试件的抗折强度均比不加纤维的有不同程度提高,掺加质量分数0.20%的PVA纤维的试件3、7、28 d的抗折强度均最大;试件的抗压强度和抗折强度的变化规律相同。韧性数值表明,试件在龄期为3 d的测试结果呈上升趋势,龄期为7 d和28 d呈下降趋势。经综合比较,PVA纤维质量分数为0.20%时,试件的力学性能最佳。  相似文献   

10.
李旭阳 《四川水泥》2023,(11):13-14+31
为了测试水泥比表面积对混凝土性能以及施工质量的影响,选择某公司的四种不同生产批次的普通硅酸盐水泥,结合粉煤灰、粗细集料等原材料,制备四种不同水泥比表面积的混凝土试样,并测试水泥砂浆性能以及混凝土试样性能。结果显示:随着水泥比表面积的逐渐增加,混凝土试样的抗折及抗压强度均呈现先上升后下降的变化;水泥比表面积越小,混凝土的干缩率越低;混凝土的抗渗性及耐久性会随着水泥比表面积的增加而提升。在应用过程中,应结合实际应用需求选择合适的水泥比表面积。  相似文献   

11.
The influence of the alite polymorphism on the strength of cement was monitored in a set of laboratory-prepared clinkers with equal quantitative phase composition and different ratio of modifications. The alite polymorphism in clinkers was influenced by the change of the MgO and SO3 side oxides in clinker, raw meal reactivity change, raw meal preheating, burning temperature or by the adding of crystallisation nuclei. The differences in the hydraulic properties of the M1 and M3 modifications were determined. In the case of all the hydration periods monitored, the strength of cements with the M1 modification was 10% higher than the strength of cements with the M3 modification.  相似文献   

12.
Recent work on the strength-enhancing mechanism of triisopropanolamine (TIPA) suggested that TIPA enhances the mechanical properties of mortar and concrete by acting on the interfacial transition zone (ITZ) between paste and sand or aggregate rather than improving the properties of the hydrated binder. This paper presents compressive strength data for 10 Portland cements tested as cement paste as well as two different kinds of mortar after 28 days hydration, so that these two mechanisms could be compared directly. The average strength improvement with TIPA was 10% in the hydrated portland cement paste and 9% in the mortar, clearly showing that the strength enhancement is not dependent on an ITZ mechanism.  相似文献   

13.
Epcat, one of the spent fluid catalytic cracking (FCC) catalysts from oil-cracking refineries, shows pozzolanic activity. In this study, pastes and mortars with Epcat were prepared and cured, and their compressive strengths after 3, 7 and 28 curing days were measured. The water/binder (W/B) ratios were 0.2, 0.25 and 0.3, and the replacement levels of cement by Epcat were 0, 5, 10 and 15 wt.%. Proper amount of superplasticizer was added into each mix to ensure similar workability.The results indicate that the presence of Epcat would increase the compressive strength of mortars substantially, but increase the compressive strength of the related pastes only slightly. Epcat mortars with W/B=0.25 show more strength-enhancing effect than those with W/B=0.3, and this effect increases with the catalyst content. Therefore, the mix (W/B=0.25) incorporated 15% Epcat exhibits the greatest compressive strength (92.3 MPa). For mortars with W/B=0.2, the strength-enhancing effect occurs only for those containing 5% catalyst; this effect becomes unclear when mixes containing 10% Epcat or more because high dosage of superplasticizer was added in obtaining proper workability and that affects the strength development. The improvement in the mechanical properties of mortars is attributed to the increase in the hydrated cement paste itself and, more importantly, improved bonds between the cement paste and aggregate.  相似文献   

14.
SiC nanowires (SiCnws) modified SiCf/HfC-SiC composites were prepared by precursor infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI) methods. The microstructure, flexural strengths, impact and impact-ablation tests of the composites with and without SiCnws were investigated. The results showed that after introducing SiCnws, not only the retention rate of HfC ceramic produced by PIP was increased obviously, but also the fracture displacement of the modified composites was reduced due to the enhancement effect of SiCnws at interface between SiC fiber and matrix. After impact and impact-ablation, the strength retention of SiCnws modified composites was 91.6 % and 69.1 % respectively, higher than that of the composites without SiCnws (85.2 % and 54.8 %). As the impact resistance of the modified composites was improved by the pull-out and bridging of SiCnws, the ablation resistance of the impacted composites was enhanced as well.  相似文献   

15.
The effect of waste material (catalyst used previously in catalytic cracking of petroleum in fluidized bed—fluidized bed cracking catalyst denoted as FBCC) on cement hydration kinetics was investigated in terms of fineness of this admixture. The compressive strength and microstructure of cement mortars were also examined. Variable percentage of this aluminosilicate admixture, originating from batches of quite different grain size composition, was introduced to cement pastes. Further on, cement mortars were produced using the material of higher activity, as it has been found in admixtured cement investigations. The waste was added as cement replacement or, partially, as sand replacement. The activity of waste catalyst was strongly related to the fineness—finer grains indicate better activity. In the presence of a FBCC admixture, the Ca(OH)2 content decrease in cement pastes due to the pozzolanic reaction is observed. The surface area of hydrated paste becomes higher and, simultaneously, the mean pore diameter decreases, as compared to reference sample, without admixture. The strength improvement is observed particularly when the aluminosilicate material is introduced as partial sand replacement.  相似文献   

16.
《Ceramics International》2015,41(7):8312-8319
In this work, Taguchi L32 experimental design was applied to optimize flexural strength and hardness of ZrB2-based composites which were prepared by SPS. With this aim, batch ZrB2-based composites tests were performed to achieve targeted experimental design with nine factors (SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure) at four different levels. Flexural strength of all composite was measured by three-point bending test. Hardness measurement was done by Vickers indenter. SEM was applied to evaluate microstructure. The results showed that SiC grain size plays important role on flexural strength and correlation between flexural strength and open porosity is low while hardness strongly depends to open porosity. Grain size variation in the range of ~1.5 µm to ~8 µm has little effect on hardness.  相似文献   

17.
The traditional chemical vapor infiltration (CVI) method still faces massive challenge in improving the densification owing to its unavoidable bottleneck effect. Herein, laser assisted-chemical vapor infiltration (LA-CVI) was introduced to fabricate C/SiC composites with mass transfer channels. As a result, the densities of the C/SiC composites were improved due to the dense band formed during the LA-CVI process. Also, with different spacing of mass transfer channels, C/SiC composites exhibited enhanced degree of densification varying from 2.10 to 2.23 g/cm3. When the spacing of channels was 3 mm, the maximum value of flexural strength reached 528 ± 12 MPa. Additionally, micro-CT and finite element analysis were empolyed to investigate dense band and density gradient in detail. The results show that C/SiC composites prepared via LA-CVI method with suitable spacing of channels had improved density and great flexural strength. The proposed method provides a novel route for the preparation of ceramic matrix composites with high density.  相似文献   

18.
Low- and high-alkali cement pastes were made with or without LiNO3 or a Li-bearing glass. The [Li]/[Na+K] molar ratio was kept constant to 0.74. The specimens were stored at 23, 38, and 60 °C in sealed containers. After 3, 7, 28, and 91 days, their pore solutions were extracted and analysed, and their residual water contents were obtained by drying. The Li glass was found to react quite slowly, and the corresponding [Li+] in solution progressively increased with time, temperature, fineness (as-received glass vs. ground glass), and the [Na++K+] concentration in solution. This glass increased the pH by about 0.1, and by about 0.2 after it was finely ground. In contrast, LiNO3 decreased the pH by about 0.1, despite significantly increasing the [Na++K+] in the pore solution. The higher the total %Na2Oe content (including Li) in the original mixtures, the higher the total alkali content incorporated in the cement hydrates. The [Li+]-[Na++K+] ratio in solution was about half of the initial ratio (0.74), while this ratio in the cement hydrates was always over 1.1. Li is the alkali most preferentially incorporated into the cement hydrates, while K is the least.  相似文献   

19.
Ceramic Matrix Composites (CMCs) are increasingly demanded especially for the production of structural components for several industries such as aerospace because of their excellent thermo-mechanical and fatigue properties. As one of the last production steps final machining is necessary to meet the required tolerances. From the economic point of view final machining of CMCs is highly critical and special knowledge is assumed to avoid irreparable damage, because of their heterogeneous, anisotropic and brittle nature. In this work diamond grinding and diamond milling have been applied to a 2D C/C-SiC composite at various feed rates and cutting speeds and in both main laminate directions, in-plane and out-of-plane. The microstructures of in-plane and out-of-plane machining indicate different material removal mechanisms due to different composite architecture. Increasing feed rate leads generally to more surface defects and consequently to higher roughness. Little influence on the four-point-bending strength was observed when changing the machining speed.  相似文献   

20.
Grinding parameter effects on grinding forces, the surface phase transformation of tetragonal to monoclinic (t-m), surface residual stress, surface roughness, and flexural strength of 3 mol% Yttrium stabilized Tetragonal Zirconia Polycrystal (3Y-TZP) were investigated. The results have shown that the grinding force, compressive residual stress, and surface roughness increase with the increase in depth of cut and the feed speed. On the other hand, they decreased as the wheel speed increased. Additionally, grinding improved the 3Y-TZP surface t-m phase transformation. The m-phase content increased with the increase in the depth of cut and decreased as the wheel speed increased. Finally, the flexural strength of ground 3Y-TZP diminished with the increase in the cut depth. The fracture and smear were observed on the dry ground surface since it has a higher surface roughness compared to that of wet grinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号