首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nutritional effects on operant visual learning behavior were investigated in a flight simulator. Operant visual learning and memory formation were normal in Drosophila (S-flies) reared on standard medium, but absent in flies (P-flies) raised on Peking medium. S- and P-flies were transferred to the alternative medium soon after hatching and their progeny was also raised on corresponding medium for several generations. respectively. S-flies transferred showed significantly reduced learning acquisition and 20 min memory retention, and operant visual learning along with memory formation was abolished in their progeny within three generations. Transferred P-flies recovered slowly their learning acquisition and memory formation to normal levels within five generations. Further studies suggested that low protein and minerals or high carbohydrate contents in Peking medium might be related to abnormal performance of P-flies. These results confirm the feasibility of affecting learning behavior by dietary regimens and developing an insect model of maternal malnutrition for pre- or post-natal malnutrition in Drosophila.  相似文献   

2.
The response of the intracellular pH (pHi, measured with BCECF) of the caecal and distal colonic epithelium of guinea pig and of monolayers of HT29 clone 19a cells on the addition of short-chain fatty acids (SCFA) was assessed. Addition of SCFA to the luminal side of these cells had no major effect on pHi, independent of whether the apical Na+/H+ exchange or the apical K+/H+ ATPase was inhibited or not. Addition of SCFA to the serosal side, on the other hand, caused a marked decrease of pHi, followed by an effective regulation back to basal values, and after removal of the acid, the cells became alkalinized. Intracellular pH is mainly regulated by mechanisms in the basolateral membrane. The basolateral Na+/H+ exchanger and the Cl-/HCO3- exchanger were mainly responsible for pHi regulation. Inhibition studies are consistent with a NHE-1 type Na+/H+ exchanger in the basolateral membranes. The apical Na+/H+ exchanger of caecal enterocytes and in HT29 cells, and the apical K+/H+ ATPase in the apical membrane of the distal colon have no or little influence on pHi regulation. The comparison shows that the HT29-19a cell line is an adequate model for studying pHi phenomena of hind gut epithelial cells.  相似文献   

3.
4.
The inclusion of specific amino acids in conventional culture media has been shown to enhance mammalian embryo development in vitro. Amino acids have been shown to confer their benefits to the preimplantation embryo in a number of different ways. However, their ability to buffer intracellular pH (pHi) has not been investigated. Thus, the aim of this study was to determine if amino acids regulate pHi in the mouse preimplantation embryo. pHi was determined using carboxy-seminaphthorhodafluor-1 (SNARF-1) and confocal microscopy. Incubation with 5,5-dimethyl-2,4-oxazol-idinedione (DMO), a non-metabolizable weak acid, resulted in a significant intracellular acidification in the zygote, 2-, 4- and 8-16-cell embryo. However, in the presence of groups of amino acids, the degree of acidification due to DMO was markedly reduced in the mouse embryo up to the 4-cell stage. Specifically, non-essential amino acids and glutamine had the greatest capacity to buffer pHi in the early embryo. The ability of amino acids to buffer pHi was not apparent from the 8-16-cell stage onwards. In contrast to the precompacted embryo, the morula did not undergo a significant decrease in pHi until exposed to DMO concentrations > or = 10 mM in the absence of amino acids. This may be due to the generation of a permeability seal during compaction, thus enabling the morula to regulate its own pHi. This regulatory ability could either be reversed by causing the morula to decompact, or created by inducing premature compaction in the 8-16-cell embryo. Data presented in this study indicate that amino acids act as buffers of pHi in the early embryo and play a key role in regulating cell physiology. Further evidence for this was provided by the result that only those embryos cultured in 30 mM DMO in the presence of non-essential amino acids and 1 mM glutamine did not block at the 2-cell stage, but grew on to develop into expanded blastocysts.  相似文献   

5.
Jejunal villus cells from young-adult (6 months) and senescent (24 months) male Wistar rats were studied to evaluate the effect of aging on intracellular pH (pHi) regulation. pHi was measured by quantitative fluorescence microscopy by using BCECF-AM [2',7'-bis(carboxyethyl)-5(6)-carboxy-fluorescein acetoxy methylester] under basal conditions and after inducing cytoplasmic acidification with pulsed NH4Cl. In the senescent rats, the recovery rate from the acidified levels was significantly lower than that in the young-adult rats (.208 +/- .005 vs .255 +/- .004 pH units/min). The relationship between pHi recovery and external Na+ concentration followed Michaelis-Menten type kinetics, the maximum velocity (Vmax) of alkalinization being significantly lower in the senescent rats than in the young-adult rats (.227 +/- .033 vs .297 +/- .024 pH units/min). These results indicate that the recovery of pHi from an acidic level was slower in the senescent rats, due to the reduced activity of Na+/H+ exchange as revealed by the decreased Vmax value.  相似文献   

6.
The hemagglutinating (HA) activity of extracellular and intracellular forms of Japanese encephalitis (JE) virus was comparatively titrated by exposure to acidic pH below 7.0. A pH-dependent irreversible loss in titer was observed with the virus grown in both C6/36 and BHK 21 (BHK) cells maintained in the pH range of 5.8 to 7.0 for 10 min at 37 C. The HA activity of intracellular virus was relatively more stable than that of extracellular virus in the pH range of 5.8 to 6.4. Virion structural components, envelope glycoprotein (E), capsid (C), and membrane (M) proteins in extracellular virus and E, C, and the precursor form of M (prM) proteins in intracellular virus were detected by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. A panel of monoclonal antibody (mAb) directed for nine antigenic epitopes on the JE virus E protein molecule was used for the analysis of antigenic reactivity of E protein after treatment at pH 6.0. The reaction between the extracellular virus and three HA-inhibiting (HI) mAbs was significantly reduced after acid treatment; however, the antigenic reactivity of intracellular virus was much more stable with a 100- to 1,000-fold difference. Infectivity titers of extracellular and intracellular viruses in Vero cells were reduced by 1/24,100 and 1/21,666 after acidic treatment at pH 6.0. In contrast, the infectivity of intracellular viruses was more stable, with residual infectivity of 1/182 and 1/340 for BHK and C6/36 cell-grown virus, respectively. Acidic treatment of JE virus not only resulted in the irreversible loss of its HA activity but also affected the antigenic reactivity of HI epitopes on its E protein molecule.  相似文献   

7.
A simultaneous brain and blood microdialysis system was developed to study the passage of colchicine through the blood-brain barrier in the mouse. Colchicine was administered as a bolus in the jugular vein (1.5 mg kg-1) and its hippocampal extracellular fluid (ECF) and blood kinetics were determined over a 4 h period using two microdialysis probes, one in the dorsal hippocampus, the other in the inferior vena cava. Colchicine rapidly diffused into the hippocampus (maximum concentration in the first dialysate sample) and brain and blood concentrations declined in parallel, suggesting rapid equilibration between these two compartments. However, only 6. 7% of total blood colchicine, 14% of unbound colchicine was present in the hippocampus suggesting that the P-glycoprotein efflux pump limits colchicine uptake by the brain. We also found, using conventional tissue homogenate analysis in parallel, that the concentration of colchicine in the hippocampal ECF was 10 times less than that in the intracellular space and that the hippocampus colchicine concentration was 2.8 times higher than that of the rest of the brain. This study shows that the simultaneous brain and blood microdialysis can be used to measure the passage of colchicine through the blood-brain barrier and to estimate the brain extra- and intracellular distribution of colchicine.  相似文献   

8.
Cells within solid tumors are known to exist in a microenvironment that may be acidic and depend on membrane-based mechanisms (Na+/H+ antiport and Na+-dependent Cl-/HCO3- exchanger) that regulate intracellular pH (pHi). We have used the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl) 5 (and 6)-carboxyfluorescein and flow cytometry to study the distribution of pHi and the activity of these pHi-regulating mechanisms among populations of murine mammary sarcoma (EMT6), human breast cancer (MCF-7), and Chinese hamster ovary cells exposed to different levels of extracellular pH (pHe). Cells were exposed to Na+ buffer in the presence or absence of HCO3- and of 5-(N-ethyl-N-isopropyl)-amiloride (a potent inhibitor of the Na+/H+ antiport) to determine the relative importance of each exchanger in the regulation of pHi. Our results indicate that: (a) the distribution of pHi at any value of pHe is broader than can be accounted for by machine noise; (b) cells maintain levels of pHi that are higher than pHe under acidic conditions; (c) the distribution of pHi is narrower when the Na+-dependent Cl-/HCO3- exchanger is active; and (d) populations that are derived from selected cells with values of pHi at lower and higher ends of the pHi distribution generate pHi distributions that are similar to those of controls, suggesting a stochastic variation in the activity of membrane-based mechanisms that regulate pHi. Our data suggest that the Na+-dependent Cl-/HCO3- exchanger is the dominant mechanism for regulation of pHi under moderately acidic conditions such as may occur in the microenvironment of solid tumors.  相似文献   

9.
Sixty-seven insulinomas were investigated by immunohistochemistry using site-directed antibodies against insulin, proinsulin, chromogranin A, HISL-19, and four proteins directly or indirectly involved in the proteolytic processing of proinsulin: the prohormone convertases PC2 and PC3, carboxypeptidase H (CPH) and 7B2. Results were expressed in a six-grade score according to the frequency of immunoreactive tumour cells. Insulin was expressed by all tumours, appearing in either a diffuse or a polarized pattern and being detected in more than 30% of tumour cells in all cases but three. Proinsulin was also expressed in all tumours, with more than 50% of tumour cells immunoreactive in all cases but 5. It was consistently localized in the Golgi apparatus. In about half the cases, moreover, it also showed diffuse cytoplasmic staining, usually with a very sparse distribution. Trabecular and solid insulinomas did not present specific, homogeneous patterns of insulin immunostaining. However, insulin immunoreactivity was much more abundant in trabecular than in solid neoplasms, being present in virtually all tumour cells (score 6) in 50% and 8% of cases, respectively. Virtually all insulinomas expressed PC2, PC3, CPH and 7B2, usually in 30-100% of tumour cells, with a frequency significantly related to that of insulin. However, detection of PC2 and 7B2 was slightly less frequent than that of PC3 and CPH. In consecutive sections these proteins were found to be mostly co-localized with insulin and chromogranin A but not with proinsulin. They were heavily expressed in all 10 tumours with more than 10% of cells showing cytoplasmic proinsulin immunoreactivity, indicating that the leakage of proinsulin from the Golgi compartment is not associated with faulty expression of converting enzymes and possibly reflects a saturated processing capacity. HISL-19 immunoreactivity was found in both Golgi apparatus and insulin stores, indicating that the relevant antigen is different from all other proteins investigated. These results do not support a defect in expression or localization of proinsulin-processing enzymes in most insulinomas.  相似文献   

10.
C Yucha  M Keen 《Canadian Metallurgical Quarterly》1996,23(5):487-95; quiz 496-7
In order for our body cells to function properly, they must be surrounded in extracellular fluid that is relatively constant with regard to osmolality. The kidneys, in concert with neural and endocrine input, regulate the volume and osmolality of the extracellular fluid by altering the amount of sodium and water excreted. This is accomplished primarily though alterations in sodium and water reabsorption, the mechanisms of which differ within each nephron segment.  相似文献   

11.
The parallel registration of light-induced changes of electrical potential of the water plant Elodea has been made with the help of intracellular-microelectrode and extracellular-contact methods. It has been shown that the curve of the light-induced bioelectrical reaction (LBR) under the extracellular registration was similar to the curve of the first differential of light-induced changes of intracellular electrical potential (LIP), but with a negative sign. Thus, the kind of changing of LBR, as the first differential of LIP, may give information about intracellular potential of ground plants, for which the microelectrode way of registration was impossible. The likeness between LBR of Elodea and the ground plants studied suggests the general regularities in the light-induced changes of electrical potentials of different plants.  相似文献   

12.
The interrelation between the Escherichia coli transport processes of K+ and putrescine+2 was investigated under the inhibition and limitation of the main energy consuming potassium transport systems (Trk, Kdp). It was shown that the potassium addition to the potassium deprived putrescine loaded cells triggers the putrescine exit at the exchange on the potassium. The stoichiometry of putrescine +2/2K+ translocation provide the electroneutrality of this process. The putrescine gradient turnover changes the potassium transport direction on the opposite one. The submitted experimental data are the evidence of putrescine +2/2K+ antiporter existence. The role of this antiporter in the E. coli pH-homeostasis is discussed.  相似文献   

13.
A gene encoding a chitin synthase with a myosin motor-like domain (csm1) was isolated from Pyricularia oryzae using a PCR fragment amplified from a fungal chitin synthase conserved region. The deduced amino acid sequence of csm1 is homologous to that of CsmA of Aspergillus nidulans (65% identity). The putative gene product of csm1 is consisted of the myosin motor-like domain and a chitin synthase domain as in A. nidulans csmA. The chitin synthase domain of its C-terminus was also homologous to Aspergillus fumigatus ChsE (61.4% identity) and Ustilago maydis Chs6 (48.6% identity) that encode class V chitin synthases. Northern analysis demonstrated that the csm1 was expressed throughout the mycelial growth of P. oryzae. This is the first report on the isolation of the gene encoding a class V chitin synthase with the myosin motor-like domain from P. oryzae.  相似文献   

14.
The control of enzymes and substrates on the flux through microbial metabolic pathways can be quantified in terms of flux control coefficients. In pathways involving group transfer, the summation theorem for flux control by the enzymes has to be modified: the sum of control by all enzymes is between 1 and 2. The phosphoenolpyruvate:glucose phosphotransferase system is such a pathway. Experimental determination of the control by the enzymes in this pathway is under way. The control of the enzymes on the glycolytic flux in yeast is low, with the possible exception of the uptake step. In Klebsiella pneumoniae potassium and ammonium ions can simultaneously be 'limiting', (i.e. have significant control on growth) at pH6, but not at pH8. This may be due to the fact that at pH8 the high-affinity potassium uptake system is absent.  相似文献   

15.
Acid-base status and renal acid excretion were studied in the Dahl/Rapp salt-sensitive (S) rat and its genetically salt-resistant counterpart (R). S rats developed hypertension while on a very high salt diet (8%) and while on a more physiological salt diet (1%) and remained normotensive while on a very low salt diet (0.08%). Under the high salt diet, intracellular pH measured in freshly isolated thymic lymphocytes using 2',7'-bis (carboxyethyl)-5 (6)-carboxyfluorescein acetomethyl ester, a pH-sensitive dye, was lower in S than in R rats both when measured in the presence of HCO3/CO2 (7.32 +/- 0.02 vs. 7.38 +/- 0.02, respectively, P < 0.05) and in its absence (7.18 +/- 0.04 vs. 7.27 +/- 0.02, respectively, P < 0.05). Under the high salt diet, net acid excretion was higher in S than R rats (1,777 +/- 111 vs. 1,017 +/- 73 muEq/24 h per 100 g body wt, respectively, P < 0.001), and this difference was due to higher rates of both titratable acid and ammonium excretion. Directionally similar differences in intracellular pH and net acid excretion between S and R rats were also observed in salt-restricted animals. In S and R rats placed on a normal salt intake (1%) and strictly pair-fed to control food intake as a determinant of dietary acid, net acid excretion was also higher in S than in R rats (562 +/- 27 vs. 329 +/- 21 muEq/24 h per 100 g, respectively, P < 0.01). No significant difference in either blood pH or bicarbonate levels were found between S and R rats on either the 0.08%, 1%, or 8% salt diets. We conclude that renal acid excretion is augmented in the salt-sensitive Dahl/Rapp rat. Enhanced renal acid excretion may be a marker of increased acid production by cells from subjects with salt-sensitive hypertension.  相似文献   

16.
The extracellular pH (pHe) in solid tumours is frequently lower than the pHe in normal tissues. Cells within an acidic environment depend on mechanisms which regulate intracellular pH (pHi) for their survival, including the Na+/H+ antiport which exports protons in exchange for Na+ ions. Amiloride and its analogues DMA (5-(N,N-dimethyl)amiloride), MIBA (5-(N-methyl-N-isobutyl)amiloride) and EIPA (5-(N-ethyl-N-isopropyl)amiloride) are known to inhibit the Na+/H+ antiport and therefore decrease the cells ability to regulate pHi. All three analogues were found to be potent inhibitors of the antiport in human MGH-U1 and murine EMT-6 cells, with DMA being approximately 20, MIBA 100 and EIPA 200-fold as potent as amiloride; EIPA also gave more complete suppression of the Na+/H+ antiport. These agents were not toxic to cells when used alone; however, in combination with nigericin, an agent which acidifies cells, all three analogues were toxic to cells at pHe < 7.0, and markedly enhanced the toxicity of nigericin alone. Cell killing was greatest for nigericin used with EIPA or MIBA. None of the agents were toxic to cells at pHe 7.0 or above. When used against variant cells lacking the Na+/H+ antiport (PS-120 cells) EIPA did not enhance the cytotoxicity of nigericin alone, suggesting that the observed effect was due to inhibition of Na+/H+ exchange, rather than due to non-specific effects. The combination of EIPA and nigericin gave similar cell killing in previously dissociated and intact MGH-U1 spheroids, suggesting that the agents have good penetration of solid tissue. Preliminary experiments using EMT-6 tumours in mice suggested that EIPA and nigericin were able to enhance the toxicity of radiation in vivo, presumably through selective effects against the hypoxic (and probably acidic) subpopulation of cells that is resistant to radiation.  相似文献   

17.
The influence of intracellular pH (pHi) changes on the formation of inositol phosphate metabolites (IPs) produced by glutamatergic stimulation was studied in 8-day-old rat brain synaptoneurosomes. For this purpose pHi was measured using 2',7'-bis-(2-carboxyl)-5,6-carboxyfluorescein (BCECF) fluorimetric assay in parallel with the basal and receptor-mediated formations of inositol monophosphate (IP1) and inositol bisphosphate (IP2). We found that glutamate (1 mM), which induces a transient acidification (delta pH = -0.05), produces an identical accumulation of IP1 and IP2. K+ (30 mM), which provokes an alkalinization of the internal medium (delta pH = +0.22), mainly leads to the formation of IP1 metabolites. Paired combinations of glutamate with 1, 5 and 10 mM NH4+ finally result in an alkalinization of the intrasynaptoneurosomal medium. These combinations produce a strong decrease of the IP2 level concomitant with an increase of the IP1 formation, compared to the levels of IP1 and IP2 evoked by glutamate alone. The total amount of IPs (IP1 + IP2) produced by these combinations is not different from that obtained with glutamate alone. Paired combinations of carbachol with NH4+ produce an identical alkalinization to that produced by NH4+ alone. These combinations produce an increased IP1 accumulation, while the IP2 formation is slightly decreased. When the internal medium is acidified by diminishing the external concentration of Na+, the ratio IP1/IP2 produced after metabotropic glutamate receptor (mGluR) activation is shifted to lower values, while it is not affected for the muscarinic stimulation. These data suggest that the mGluR-associated pathway in synaptoneurosomes is sensitive to pHi shifts, while the muscarinic receptor-associated pathway is less altered when pHi is manipulated. It may be proposed that pH-sensitive inositol phosphate dephosphorylating systems, i.e. phosphatases, are associated with mGluRs in this preparation.  相似文献   

18.
The causative factors in muscle fatigue are multiple, and vary depending on the intensity and duration of the exercise, the fibre type composition of the muscle, and the individual's degree of fitness. Regardless of the aetiology, fatigue is characterized by the inability to maintain the required power output and the decline in power can be attributed to a reduced force and velocity. Following high-intensity exercise, peak force has been shown to recover biphasically with an initial rapid (2 min) recovery followed by a slower (50 min) return to the pre-fatigued condition. The resting membrane potential depolarizes by 10-15 mV, while the action potential overshoot declines by a similar magnitude. Following high-frequency stimulation of the frog semitendinous muscle, we observed intracellular potassium [K+]1 decrease from 142 +/- 5 to 97 +/- 8 mM, while sodium [Na+]i rose from 16 +/- 1 to 49 +/- 6 mM. The [K+]i loss was similar to that observed in fatigued mouse and human skeletal muscle, which suggests that there may be a limit to which [K+]i can decrease before the associated depolarization begins to limit the action potential frequency. Fibre depolarization to- 60 mV (a value observed in some cells) caused a significant reduction in the t-tubular charge movement, and the extent of the decline was inversely related to the concentration of extracellular Ca2+. A decrease in intracellular pH (pHi) to 6.0 was observed, and it has been suggested by some that low pH may disrupt E-C coupling by directly inhibiting the SR Ca2+ release channel. However, Lamb at al. (1992) observed that low pH had no effect on Ca2+ release, and we found low pHi to have no effect on t-tubular charge movement (Q) or the Q vs. Vm relationship. The Ca2+ released from the SR plays three important roles in the regulation of E-C coupling. As Ca2+ rises, it binds to the inner surface of the t-tubular charge sensor to increase charge (Q gamma) and thus Ca2+ release, it opens SR Ca2+ channels that are not voltage-regulated, and as [Ca2+]i increases further it feeds back to close the same channels. The late stages of fatigue have been shown to be in part caused by a reduced SR Ca2+ release. The exact cause of the reduced release is unknown, but the mechanism appears to involve a direct inhibition of the SR Ca2+ channel.  相似文献   

19.
Agonist activation of cholinergic receptors expressed in perifused hypothalamic and immortalized GnRH-producing (GT1-7) cells induced prominent peaks in GnRH release, each followed by a rapid decrease, a transient plateau, and a decline to below basal levels. The complex profile of GnRH release suggested that acetylcholine (ACh) acts through different cholinergic receptor subtypes to exert stimulatory and inhibitory effects on GnRH release. Whereas activation of nicotinic receptors caused a transient increase in GnRH release, activation of muscarinic receptors inhibited basal GnRH release. Nanomolar concentrations of ACh caused dose-dependent inhibition of cAMP production that was prevented by pertussis toxin (PTX), consistent with the activation of a plasma-membrane Gi protein. Micromolar concentrations of ACh also caused an increase in phosphoinositide hydrolysis that was inhibited by the M1 receptor antagonist, pirenzepine. In ACh-treated cells, immunoblot analysis revealed that membrane-associated G(alpha q/11) immunoreactivity was decreased after 5 min but was restored at later times. In contrast, immunoreactive G(alpha i3) was decreased for up to 120 min after ACh treatment. The agonist-induced changes in G protein alpha-subunits liberated during activation of muscarinic receptors were correlated with regulation of their respective transduction pathways. These results indicate that ACh modulates GnRH release from hypothalamic neurons through both M1 and M2 muscarinic receptors. These receptor subtypes are coupled to Gq and Gi proteins that respectively influence the activities of PLC and adenylyl cyclase/ion channels, with consequent effects on neurosecretion.  相似文献   

20.
A number of potential neurochemical mediators of opiate-induced muscle rigidity have been proposed based on the results of systemic drug studies and on knowledge of the brain sites implicated in opiate rigidity. The effects of i.c.v. pretreatment with selected opioidergic, alpha adrenergic and serotonergic drugs on muscle rigidity induced with systemic injection of the potent opiate agonist alfentanil (ALF) were investigated in spontaneously ventilating rats. The opiate antagonist methylnaloxonium (MN; 0.2-14 nmol), alpha-2 adrenergic agonists dexmedetomidine (DEX; 0.4-42 nmol) or 2-(2,6-diethylphenylamino)-2-imidazoline hydrochloride (ST91; 4-400 nmol), alpha-1 adrenergic antagonist prazosin (PRZ; 7-70 nmol) or serotonergic antagonist ketanserin (KET; 18-550 nmol) were injected i.c.v. (10 microliters) and ALF (500 micrograms/kg s.c.) was administered 10 min later. S.c. electrodes were used to record gastrocnemius electromyographic activity. Both MN and DEX dose-dependently and potently antagonized ALF-induced rigidity. ST91 produced shorter-lived, less profound, antagonism of ALF rigidity. PRZ, at the highest dose tested, produced a delayed and modest reduction in ALF rigidity. A large, non-selective, dose of KET incompletely attenuated ALF rigidity. These results lend support to the hypothesis that central opioid and alpha-2 adrenergic receptors mediate opiate-induced muscle rigidity in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号