首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
以TC4粉末和焊丝为原料,利用激光和电弧增材制造方法分别制备块状试样,对比分析了热处理对试样显微组织和力学性能的影响。结果表明:增材试样的宏观组织均为粗大β柱状晶,试样微观组织均为细小的网篮组织。经退火处理后,激光增材试样显微组织中α相随着不断生长互相截断,α相呈短棒状;电弧增材试样显微组织变为粗大的网篮组织,两种试样的α相长宽比均减小。退火处理使试样强度略降低而塑性得到明显提高,两种增材制造沉积态和退火态试样强度相差不大,但由于电弧增材沉积态和退火态试样显微组织中α相长宽比较大以及气孔率相对略高,造成其塑性较低,较激光增材试样分别下降38%和31%,二者拉伸断裂方式相同均为韧性断裂。  相似文献   

2.
文章首先对电弧增材制造的成形原理和优缺点进行了阐述,然后对有关Inconel 718合金电弧增材制造件的微观组织及力学性能特征的最新研究成果进行了整合,并对施以脉冲电流、双级时效热处理和道次间轧制的三种主要优化处理工艺进行了介绍,最后对Inconel 718合金高质量结构件的调控工艺进行了总结与展望。  相似文献   

3.
采用电弧增材制造技术在7075铝合金基材上成形2024铝合金试样,研究了不同工艺参数下异质铝合金界面的成形工艺性,以及热处理前后2024/7075异质铝合金电弧增材成形界面的显微组织和力学性能。结果表明,电弧增材成形过程的热输入增加,则2024/7075异质铝合金之间的铺展效果更好;2024/7075异质铝合金电弧增材界面区域内Mg、Zn、Cu元素含量较高,沉积态界面组织第二相沿结合界面连续分布,热处理态界面组织第二相粒子呈现点状、棒状、块状弥散分布;热处理后2024/7075异质铝合金界面的抗拉强度为388MPa,与沉积态相比力学性能显著提高。  相似文献   

4.
文章对电弧熔丝增材制造技术(Wire and Arc Additive Manufacturing, WAAM)的发展历史、应用状况进行了全面的叙述,对各材料在制造过程中出现的共性缺陷(包括焊后变形、孔隙和裂缝等)的产生原因及各种提高制造质量的处理工艺进行了分析,最后结合现有的电弧熔丝增材制造材料流变、热流场密度、晶粒演化数学模型,从降低电弧熔丝增材制造制件缺陷,提升产品质量及综合性能,研发增材制造新算设备、新工艺、新数学模型方面对电弧熔丝增材制造技术的发展方向进行了展望。  相似文献   

5.
采用电弧增材制造工艺制备了5356铝合金成形试样。通过观察合金微观组织及对拉伸性能研究发现,电弧增材制造5356铝合金成形质量良好、冶金结合优良,气孔率为0.38%优于大多数焊接样品,未出现较大缺陷;试样显微组织主要由α(Al)基体和弥散强化相β(Al_3Mg_2)组成,在沉积态试样中由于非平衡凝固造成合金元素偏析和富集,经420℃/18 h均匀化退火处理元素分布均匀性得到改善;沉积态试样在不同方向取样试样中平均抗拉强度分别为267,277 MPa,均能达到AWSA5.01/A5.10标准规定值,均匀化退火后增材制造5356铝合金的强韧性同时得到提高,远远超过5356铝合金的焊接性能,元素均匀化及β相的弥散析出是均匀化处理试样性能改善的主要原因;室温拉伸试样的断口位置出现明显颈缩;沉积态断口表面较为平缓,均匀化退火后断口表面出现明显起伏;断口表面分布有细小且均匀的韧窝,且均匀化退火后韧窝更为细小。  相似文献   

6.
介绍了激光增材制造高熵合金的工艺方法,从成形工艺、合金元素含量(摩尔分数)、热处理工艺和增强相添加等几个方面综述了国内外激光增材制造高熵合金的研究进展,分析了激光熔化沉积和选区激光熔化成形两种主要激光增材制造技术,以及两种技术制备高熵合金的微观结构和力学性能,指出了高熵合金激光增材制造技术的发展趋势及存在的主要问题,并提出了改进措施。  相似文献   

7.
激光熔丝增材制造技术在航空航天、海工船舶等领域应用前景广阔.针对TC4-DT材料,在初步优化的工艺参数下,通过激光熔丝增材制造技术制备金属试样,并对试样进行固溶-强化热处理,研究激光熔丝沉积态及热处理态的微观组织、缺陷及室温拉伸力学性能.研究发现,激光熔丝TC4-DT成形态组织为粗大的柱状晶及针状α'马氏体,热处理后转变为等轴晶与柱状晶的双相组织,马氏体分解为针状α+β双相组织,固溶-强化热处理后拉伸力学性能与锻件水平相当.  相似文献   

8.
镍铝青铜合金因具有较好的延展性、强度、断裂韧性及耐腐蚀性能而广泛应用于石油和天然气泵系统、航空和船舶工业应用等领域。传统铸造工艺制备的镍铝青铜具有复杂的物相组成,在严苛的服役环境中容易发生严重的腐蚀失效。近年来,增材制造技术在铜合金加工领域获得迅猛的发展,基于快速非平衡凝固特性,能够通过显微组织调控来提高铜合金的机械性能,同时有望提升其在严苛服役环境中的耐腐蚀性能。本文列举了不同增材制造技术制备的镍铝青铜合金,围绕其显微组织、力学性能以及腐蚀行为展开深入探讨,进一步对比分析了不同制备工艺参数以及热处理工艺与镍铝青铜显微组织的关联机制及其对腐蚀行为的影响规律。本文通过构建增材制造镍铝青铜制备工艺-显微组织特征-耐腐蚀性能之间的内禀关系,能够为高性能增材制造镍铝青铜的设计优化及应用提供理论基础和实践指导。  相似文献   

9.
采用基于冷金属过渡焊接的电弧熔丝增材制造技术(CMT-WAAM)制备了Ti-6Al-3Nb-2Zr-1Mo(Ti6321)合金,研究了热处理对Ti6321合金显微组织、力学性能的影响。研究表明,沉积态Ti6321合金组织由不规则的多边形原始β晶和晶界α相(αGB)组成,晶内分布有厚度不均的α片层和少量β相。经α+β两相区退火后,α片层内部的位错密度降低,其中,700℃退火后强度和冲击吸收功均有所降低,800℃退火后冲击吸收功提高,且强度达到1050 MPa以上。经双重热处理后析出次生α相(αs),晶界α相(αGB)弱化呈断续分布,Ti6321合金冲击吸收功最高达到34 J。不同热处理状态下的冲击断口均有大量韧窝,为典型的韧性断裂。  相似文献   

10.
采用激光选区熔化(Selective Laser Melting, SLM)的增材制造成形技术制备内含人工设计缺陷的TC4钛合金样品,研究了预埋缺陷的尺寸、位置对成形合金室温拉伸性能的影响规律。结果表明:由于SLM成形过程人工植入缺陷内包含的合金粉末无法排出热处理后在孔洞缺陷表面烧结,导致缺陷实际尺寸较设计尺寸略小。当预埋缺陷直径小于0.7 mm时,合金抗拉强度基本保持不变,试样均从非预埋缺陷区断裂;当预埋缺陷直径超过0.7 mm后,抗拉强度随缺陷尺寸增大而显著降低,试样均从预埋缺陷区断裂。合金延伸率受缺陷的影响较为显著,随着缺陷尺寸的增大,延伸率整体呈现逐渐降低的趋势,当缺陷尺寸超过0.7 mm后,延伸率急剧降低,缺陷尺寸超过0.9 mm后,延伸率在2%~4%范围内波动。缺陷尺寸超过0.7 mm后,缺陷尺寸是影响增材制造合金强度和延伸率的主导因素。  相似文献   

11.
高强度钢的增材制造已成为金属增材制造领域发展的主要方向之一,首先,对增材制造金属材料与技术的研究进展与前沿动态进行了追踪,分别对低合金超高强度钢、高合金超高强度钢以及高强度不锈钢三种类型高强度钢重点牌号的相关研究进行分析,详细总结了各种典型高强度钢的制粉和打印工艺、热处理工艺以及组织性能等方面的相关工作。其次,重点关注了国内外增材制造高强度钢的典型应用和主要研究成果。针对目前高强度钢增材制造领域标准体系建设的不足,在专用合金的正向设计与研发、大尺寸高精度与智能化装备发展以及标准体系建设三个方面提出了相关建议。基于对增材制造高强度钢的研究与应用进展的分析,提出了领域重点关注方向以及相关技术进一步发展的趋势,以助于促进增材制造高强度钢的工业化推广应用。  相似文献   

12.
电弧增材制造(WAAM)技术将电弧作为热源,具备熔敷效率高、设备简单、成本较低的特点,在制备大型零件时具有更大的优势。基于3种典型电弧热源的电弧增材制造方法包括熔化极电弧(GMA)增材制造、非熔化极电弧(GTA)增材制造与等离子弧(PA)增材制造。GMA增材制造技术拥有熔敷效率高、易于实现等特点,特别是基于冷金属过渡(CMT)的增材制造技术取得了重要进展,主要缺点在于熔滴过渡对熔池的显著冲击易影响成形精度和质量。GTA增材制造技术具有最为稳定的电弧燃烧过程,具有无飞溅、成形精度与质量高等显著优势,特别适合于铝合金、镍基合金、钛合金等材料的增材制造。PA增材制造与GMA增材制造与GTA增材制造相比,存在能量密度高、集束性好等优点。但是PA合理参数区间较窄、参数匹配复杂、热输入大等缺点也限制了其在该领域的应用。由于增材制造过程使得后堆积层存在反复加热与冷却,增材制造成形件组织存在上中下区域的差异以及熔敷方向及垂直于熔敷方向性能的各向异性。增材制造金属材料的热循环过程对于晶粒尺寸、熔覆层性能以及成形精度非常关键,分别可以通过改变成形件冷却条件、改变熔池凝固条件对组织性能进行改善。新型电弧热源...  相似文献   

13.
研究了电弧增材制造(WAAM)工艺参数、旋转摩擦加工(RFP)转速对7075铝合金堆积气孔率的影响,以及时效处理温度对堆积金属组织与性能的影响,采用优化的电弧增材制造工艺参数、旋转摩擦加工转速与时效温度,进行大型7075铝合金运载火箭过渡端框架的电弧增材-旋转摩擦复合制造及热处理强化。结果表明:保护气流量较高时引起的气体紊流现象会降低保护效果,增大堆积气孔倾向;提高负极性模数可增强丝材阴极雾化,有效清除氧化膜,减少熔池中[H]含量以降低堆积金属气孔率。通过二次回归通用旋转组合实验优化出电弧增材制造工艺为:保护气流量20 L·min-1,负极性模数9,电弧枪行进速度592 mm·min-1,送丝速度7.2 m·min-1;该工艺下堆积金属成形良好,气孔率为7.03%。旋转摩擦加工通过引起7075铝合金堆积金属塑性变形及动态再结晶消除气孔,优化出1800 r·min-1加工转速使堆积金属气孔率进一步降低至4.32%。对堆积金属进行高于120℃的时效热处理易导致α-Al晶粒与η-MgZn2相粗化,降低堆积...  相似文献   

14.
朱敏 《世界有色金属》2022,(20):232-234
增材制造(3D打印)是一种将复杂的三维结构模型,通过原材料逐层叠加的方式,直接转化成完整零件的新型制造技术。以能量源作为划分依据,可将增材制造技术分为激光增材制造、电弧增材制造、电子束增材制造、光固化增材制造等。其中,激光增材制造技术以激光为零件制造的能量源,激光加工具有诸多优点,如零件成型速度快、激光能量密度高、加工精度高的特点,可实现工业领域中难加工材料和复杂结构零件的制造,在生物医疗、航空航天、国防制造、汽车制造等工业领域优势显著。本文围绕近年来激光增材制造的研究及应用,综述了激光增材制造的工艺方法、工艺原理、应用领域,并探讨了激光增材制造当前所面临的发展“瓶颈”及应对策略。  相似文献   

15.
金属增材制造技术自诞生以来,经快速发展,已在诸多领域得到了广泛的应用,被列入决定未来经济的十二大颠覆性技术之一。基于丝材的金属增材制造技术由于其沉积效率高、制造成本低、制造周期短和材料利用率高,近年来成为国内外研究和应用的热点。本文以钛合金丝材为原材料,针对广泛采用的电弧/等离子弧熔丝、电子束熔丝和激光熔丝增材制造技术,分别从成形工艺参数优化、宏微观组织结构分析、后热处理组织性能调控及专用原材料开发等方面所取得的最新研究成果进行了详细论述。在此基础之上,介绍了基于钛合金丝材的增材制造在工程化应用及相关标准规范的制定情况。最后,指出钛合金丝材增材制造技术在组织和性能等方面存在的固有不足,提出了采用锻造+增材复合成形复合后处理和专用丝材研制等方法,并建立有别于传统锻造和铸造的新标准体系,有助于推广其在各领域的大规模应用。  相似文献   

16.
高强钢具有高的强度及韧性,在航空航天等领域具有重要地位。大型关键重载构件存在锻造难度大、对热加工要求高等问题,限制了其进一步发展和应用。增材制造技术可以实现金属构件的高性能精确快速成形,为高强度钢的制造提供了一条新途径。本文介绍了增材制造高强度钢的成形特性,综述了增材制造高强度钢的组织演变规律和力学性能特征。研究表明,工艺参数对增材制造高强度钢的致密度、熔覆层宽度和高度均影响较大,进而影响成形件内部质量。热累积会使层间组织变粗大,同时使不同部位的组织发生不同的固态相变,使高强钢的组织更加复杂;热处理可以显著提高增材制造高强度钢的综合力学性能;最后对高强度钢增材制造过程中需要进一步深入研究的问题进行了探讨和展望。  相似文献   

17.
近年来,高熵合金以其多主元成分、独特的组织和许多优异的性能在各个领域引起了极大关注。这种基于"构型熵"设计的新型合金,有望突破传统合金的性能极限,已经成为材料科学发展新的热点和方向之一。传统的电弧熔炼技术限制了高熵合金复杂结构件的制备及其工业化应用,新兴的增材制造技术已成为当前复杂金属构件制备中最具前景的制造方法之一。综述了高熵合金激光选区熔化技术的研究进展,包括工艺、优化和应用等,并对高熵合金未来的工业化应用提出了展望。  相似文献   

18.
通过热处理工艺试验设计,研究了不同热处理条件下FGH95合金的组织和性能。与亚固溶线温度热处理后细晶试样比较,过固溶线温度热处理的试样获得了晶粒度8级的相对粗晶组织,强度仅比细晶试样的降低不超过5%,而蠕变性能显著提高,700℃/690MPa条件下,0.2%残余应变的蠕变寿命提高了3~4倍;另外,通过优化γ’相的尺寸与分布,可进一步提高合金的力学性能。  相似文献   

19.
肖桂华 《四川冶金》2001,23(3):37-38
GH625合金是一种用Cr、Mo固溶强化的镍基合金,采用合适的热处理能促使晶界碳化物析出,在较小范围内可以增加合金的强度.在焊接结构中,热影响区溶合线附近的碳化物溶解和残余应力的恶化作用能使应力腐蚀开裂敏感,存在降低焊件中的残余应力和降低应力腐蚀开裂倾向.降低残余应力常用的方法是焊后热处理,合适的热处理工艺能使晶界碳化物再生,同时焊接残余应力也被降低.  相似文献   

20.
对TC4钛合金MIG焊焊接接头进行焊后热处理,采用盲孔法、拉伸、冲击、金相、扫描等方法对接头进行试验与分析,研究不同热处理工艺对残余应力、组织和力学性能的影响.结果 表明:焊接接头经焊后热处理,横向残余应力和纵向残余应力平均值最大降为74.2 MPa和70.1 MPa;未热处理接头母材区为α+β片层组织,焊缝区为α针状马氏体组织,热影响区为α和α'混合组织.热处理后,随着热处理温度和时间的增加,焊缝组织中的针状α'马氏体粗化,晶粒尺寸增加;未热处理接头焊后拉伸断裂位置为母材处,接头强度高于母材.在650℃+2 h的热处理工艺下,接头延伸率较未热处理状态提高,断裂方式为韧性断裂,保温时间延长至3h,晶粒粗大、延伸率降低.接头室温冲击功焊后状态能够达到母材的95%,经焊后热处理后接头得到软化,室温冲击功相比焊后状态有所下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号