首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的 为了解决四足动物运动数据难以获取的问题,建立一种快速易用的四足动物运动重建和制作途径,提出了一种面向四足动物的实时低维运动生成方法。方法 首先,建立以质点、刚体和弹簧为基础的低维物理解算器,将四足动物骨架抽象为低维物理模型;其次,依据步态模式建立足迹约束,自脚向上分肢体求解全身物理质点的运动信息;最后,依据通用约束修正后的质点位置,反算全身动画骨骼节点,生成目标运动。结果 针对不同步态、不同体型、不同风格的四足动物进行多组实验,本文方法能够达到330帧/s的生成速度,且具备良好的视觉效果和通用性。结论 本文方法的输入数据易于学习和获取,计算过程实时稳定,可以快速生成符合视觉真实感的多风格运动数据。  相似文献   

2.
In the previous works, the real‐time fluid‐character animation could hardly be achieved because of the intensive processing demand on the character's movement and fluid simulation. This paper presents an effective approach to the real‐time generation of the fluid flow driven by the motion of a character in full 3D space, based on smoothed‐particle hydrodynamics method. The novel method of conducting and constraining the fluid particles by the geometric properties of the character motion trajectory is introduced. Furthermore, the optimized algorithms of particle searching and rendering are proposed, by taking advantage of the graphics processing unit parallelization. Consequently, both simulation and rendering of the 3D liquid effects with realistic character interactions can be implemented by our framework and performed in real‐time on a conventional PC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Detailed animation of 3D articulated body models is in principle desirable but is also a highly resource‐intensive task. Resource limitations are particularly critical in 3D visualizations of multiple characters in real‐time game sequences. We investigated to what extent observers perceptually process the level of detail in naturalistic character animations. Only if such processing occurs would it be justified to spend valuable resources on richness of detail. An experiment was designed to test the effectiveness of 3D body animation. Observers had to judge the level of overall skill exhibited by four simulated soccer teams. The simulations were based on recorded RoboCup simulation league games. Thus objective skill levels were known from the teams' placement in the tournament. The animations' level of detail was varied in four increasing steps of modelling complexity. Results showed that observers failed to notice the differences in detail. Nonetheless, clear effects of character animation on perceived skill were found. We conclude that character animation co‐determines perceptual judgements even when observers are completely unaware of these manipulations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In the paper, we present an online real‐time method for automatically transforming a basic locomotive motion to a desired motion of the same type, based on biomechanical results. Given an online request for a motion of a certain type with desired moving speed and turning angle, our method first extracts a basic motion of the same type from a motion graph, and then transforms it to achieve the desired moving speed and turning angle by exploiting the following biomechanical observations: contact‐driven center‐of‐mass control, anticipatory reorientation of upper body segments, moving speed adjustment, and whole‐body leaning. Exploiting these observations, we propose a simple but effective method to add physical and behavioral naturalness to the resulting locomotive motions without preprocessing. Through experiments, we show that our method enables a character to respond agilely to online user commands while efficiently generating walking, jogging, and running motions with a compact motion library. Our method can also deal with certain dynamical motions such as forward roll. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Facial expression transfer has been actively researched in the past few years. Existing methods either suffer from depth ambiguity or require special hardware. We present a novel marker‐less, real‐time facial transfer method that requires only a single video camera. We develop a robust model, which is adaptive to user‐specific facial data. It computes expression variances in real time and rapidly transfers them onto a target character either from images or videos. Our method can be applied to videos without prior camera calibration and focal adjustment. It enables realistic online facial expression editing and performance transferring in many scenarios such as video conference, news broadcasting, lip‐syncing for song performances and so on. With low computational cost and hardware requirement, our method tracks a single user at an average of 38fps and runs smoothly even in web browsers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract: In the last years, smart surveillance has been one of the most active research topics in computer vision because of the wide spectrum of promising applications. Its main point is about the use of automatic video analysis technologies for surveillance purposes. In general, a processing framework for smart surveillance consists of a preliminary motion detection step in combination with high‐level reasoning that allows automatic understanding of evolutions of observed scenes. In this paper, we propose a surveillance framework based on a set of reliable visual algorithms that perform different tasks: a motion analysis approach that segments foreground regions is followed by three procedures, which perform object tracking, homographic transformations and edge matching, in order to achieve the real‐time monitoring of forbidden areas and the detection of abandoned or removed objects. Several experiments have been performed on different real image sequences acquired from a Messapic museum (indoor context) and the nearby archaeological site (outdoor context) to demonstrate the effectiveness and the flexibility of the proposed approach.  相似文献   

7.
We present a points‐based user interface for character posing. In our method, users insert a number of three‐dimensional (3D) points in a virtual environment. The system performs a linear search of a motion capture database for the best matched pose and then places the pose immediately in the virtual environment to be overlapped with the input points. For a fast and precise distance computation between the input points and the example poses from the database, we developed a closed‐form solution of the 3D points registration problem. To demonstrate the easiness and usability of our approach, we built a motion database including various kinds of human motion and conducted a user study of character posing tasks with non‐expert users. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Films like Shrek, Madagascar, The Chronicles of Narnia and Charlotte's web all have something in common: realistic quadruped animations. While the animation of animals has been popular for a long time, the technical challenges associated with creating highly realistic, computer generated creatures have been receiving increasing attention recently. The entertainment, education and medical industries have increased the demand for simulation of realistic animals in the computer graphics area. In order to achieve this, several challenges need to be overcome: gathering and processing data that embodies the natural motion of an animal – which is made more difficult by the fact that most animals cannot be easily motion-captured; building accurate kinematic models for animals, with adapted animation skeletons in particular; and developing either kinematic or physically-based animation methods, either by embedding some a priori knowledge about the way that quadrupeds locomote and/or adopting examples of real motion. In this paper, we present an overview of the common techniques used to date for realistic quadruped animation. This includes an outline of the various ways that realistic quadruped motion can be achieved, through video-based acquisition, physics based models, inverse kinematics or some combination of the above.  相似文献   

9.
运动路径驱动的角色动画合成方法   总被引:1,自引:0,他引:1  
为了给虚拟角色合成出逼真的大范围运动数据,提出一种为特定运动路径配上自然多样的人体运动数据的方法.该方法将待匹配运动路径分割为一系列短小的运动路径片断,并在一个结构化的运动状态机上逐片断地寻找最为匹配的运动序列;然后将这些运动序列依次连接起来,得到一段连续的、满足运动路径约束的人体运动数据.用户还可以交互式地设计运动路径上一个路径片断的运动类型.该方法适用于待匹配运动路径运动范围大、对多条运动路径同时计算匹配运动、多条运动路径之间交叉频繁的情景.  相似文献   

10.
Generating a robust gait is one of the most important factors to improve the adaptability of quadruped robots on rough terrains. This paper presents a new continuous free gait generation method for quadruped robots capable of walking on the rough terrain characterized by the uneven ground and forbidden areas. When walking with the proposed gait, the robot can effectively maintain its stability by using the Center of Gravity (COG) trajectory planning method. After analyzing the point cloud of rough terrain, the forbidden areas of the terrain can be obtained. Based on this analysis, an optimal foothold search strategy is presented to help quadruped robot to determine the optimum foothold for the swing foot automatically. In addition, the foot sequence determining method is proposed to improve the performance of robot. With the free gait proposed in this paper, quadruped robot can walk through the rough terrains automatically and successfully. The correctness and effectiveness of the proposed method is verified via simulations.  相似文献   

11.
Muscle‐based control is transforming the field of physics‐based character animation through the integration of knowledge from neuroscience, biomechanics and robotics, which enhance motion realism. Since any physics‐based animation system can be extended to a muscle‐actuated system, the possibilities of growth are tremendous. However, modelling muscles and their control remains a difficult challenge. We present an organized review of over a decade of research in muscle‐based control for character animation, its fundamental concepts and future directions for development. The core of this review contains a classification of control methods, tables summarizing their key aspects and popular neuromuscular functions used within these controllers, all with the purpose of providing the reader with an overview of the field.  相似文献   

12.
We present a new real‐time approach to simulate deformable objects using a learnt statistical model to achieve a high degree of realism. Our approach improves upon state‐of‐the‐art interactive shape‐matching meshless simulation methods by not only capturing important nuances of an object's kinematics but also of its dynamic texture variation. We are able to achieve this in an automated pipeline from data capture to simulation. Our system allows for the capture of idiosyncratic characteristics of an object's dynamics which for many simulations (e.g. facial animation) is essential. We allow for the plausible simulation of mechanically complex objects without knowledge of their inner workings. The main idea of our approach is to use a flexible statistical model to achieve a geometrically‐driven simulation that allows for arbitrarily complex yet easily learned deformations while at the same time preserving the desirable properties (stability, speed and memory efficiency) of current shape‐matching simulation systems. The principal advantage of our approach is the ease with which a pseudo‐mechanical model can be learned from 3D scanner data to yield realistic animation. We present examples of non‐trivial biomechanical objects simulated on a desktop machine in real‐time, demonstrating superior realism over current geometrically motivated simulation techniques.  相似文献   

13.
Virtual characters in games and simulations often need to plan visually convincing paths through a crowded environment. This paper describes how crowd density information can be used to guide a large number of characters through a crowded environment. Crowd density information helps characters avoid congested routes that could lead to traffic jams. It also encourages characters to use a wide variety of routes to reach their destination. Our technique measures the desirability of a route by combining distance information with crowd density information. We start by building a navigation mesh for the walkable regions in a polygonal two‐dimensional (2‐D) or multilayered three‐dimensional (3‐D) environment. The skeleton of this navigation mesh is the medial axis. Each walkable region in the navigation mesh maintains an up‐to‐date density value. This density value is equal to the area occupied by all the characters inside a given region divided by the total area of this region. These density values are mapped onto the medial axis to form a weighted graph. An A* search on this graph yields a backbone path for each character, and forces are used to guide the characters through the weighted environment. The characters periodically replan their routes as the density values are updated. Our experiments show that we can compute congestion‐avoiding paths for tens of thousands of characters in real‐time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We present a novel performance‐driven approach to animating cartoon faces starting from pure 2D drawings. A 3D approximate facial model automatically built from front and side view master frames of character drawings is introduced to enable the animated cartoon faces to be viewed from angles different from that in the input video. The expressive mappings are built by artificial neural network (ANN) trained from the examples of the real face in the video and the cartoon facial drawings in the facial expression graph for a specific character. The learned mapping model makes the resultant facial animation to properly get the desired expressiveness, instead of a mere reproduction of the facial actions in the input video sequence. Furthermore, the lit sphere, capturing the lighting in the painting artwork of faces, is utilized to color the cartoon faces in terms of the 3D approximate facial model, reinforcing the hand‐drawn appearance of the resulting facial animation. We made a series of comparative experiments to test the effectiveness of our method by recreating the facial expression in the commercial animation. The comparison results clearly demonstrate the superiority of our method not only in generating high quality cartoon‐style facial expressions, but also in speeding up the animation production of cartoon faces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes a novel real‐time multi‐spectral imaging capability for surveillance applications. The capability combines a new high‐performance multi‐spectral camera system with a distributed algorithm that computes a spectral‐screening principal component transform (PCT). The camera system uses a novel filter wheel design together with a high‐bandwidth CCD camera to allow image cubes to be delivered at 110 frames s with a spectral coverage between 400 and 1000 nm. The filters used in a particular application are selected to highlight a particular object based on its spectral signature. The distributed algorithm allows image streams from a dispersed collection of cameras to be disseminated, viewed, and interpreted by a distributed group of analysts in real‐time. It operates on networks of commercial‐off‐the‐shelf multiprocessors connected with high‐performance (e.g. gigabit) networking, taking advantage of multi‐threading where appropriate. The algorithm uses a concurrent formulation of the PCT to de‐correlate and compress a multi‐spectral image cube. Spectral screening is used to give features that occur infrequently (e.g. mechanized vehicles in a forest) equal importance to those that occur frequently (e.g. trees in the forest). A human‐centered color‐mapping scheme is used to maximize the impact of spectral contrast on the human visual system. To demonstrate the efficacy of the multi‐spectral system, plant‐life scenes with both real and artificial foliage are used. These scenes demonstrate the systems ability to distinguish elements of a scene that cannot be distinguished with the naked eye. The capability is evaluated in terms of visual performance, scalability, and real‐time throughput. Our previous work on predictive analytical modeling is extended to answer practical design questions such as ‘For a specified cost, what system can be constructed and what performance will it attain?’ Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
角色动画一直是计算机动画和虚拟现实领域的重要研究内容之一.近年来,随着3D游戏动漫以及电影特效制作产业的蓬勃发展,角色动画对物理真实性的要求日益迫切,基于物理的角色动画合成受到了研究者们越来越多的关注,催生了许多新方法与新技术.该研究问题的核心是人体运动合成方法,其旨在驱动虚拟角色运动,生成满足物理运动规律的动画.重点围绕角色动画合成方法的研究进展进行介绍.首先在对国内外研究工作全面分析与总结的基础上,根据关节力矩的计算方式不同将其分为7类:时空约束法、约束动力学优化法、低维模型法、有限状态机、数据驱动法、动力学过滤法、概率模型法,详细阐述每一类方法的原理及特点后,重点介绍每类方法中近期出现的新工作.其次,对上述各类方法的优缺点进行对照分析.最后,结合实际应用需求,针对目前工作中存在的不足,提出一些可继续深入研究的问题.  相似文献   

17.
Turning gait is a basic motion for humanoid robots. This paper presents a method for humanoid tuming, i.e. clock-turning. The objective of clock-turning is to change robot direction at a stationary spot. The clock-turning planning consists of four steps: ankle trajectory generation, hip trajectory generation, knee trajectory generation, and inverse kinematics calculation. Our proposed method is based on a typical humanoid structure with 12 DOFs (degrees of freedom). The final output of clock-turning planning is 12 reference trajectories, which are used to control a humanoid robot with 12 DOFs. ZMP (zero moment point) is used as stability criterion for the planning. Simulation experiments are conducted to verify the effectiveness of our proposed clock-turuing method.  相似文献   

18.
Recent advances in physically‐based simulations have made it possible to generate realistic animations. However, in the case of solid‐fluid coupling, wetting effects have rarely been noticed despite their visual importance especially in interactions between fluids and granular materials. This paper presents a simple particle‐based method to model the physical mechanism of wetness propagating through granular materials; Fluid particles are absorbed in the spaces between the granular particles and these wetted granular particles then stick together due to liquid bridges that are caused by surface tension and which will subsequently disappear when over‐wetting occurs. Our method can handle these phenomena by introducing a wetness value for each granular particle and by integrating those aspects of behavior that are dependent on wetness into the simulation framework. Using this method, a GPU‐based simulator can achieve highly dynamic animations that include wetting effects in real time.  相似文献   

19.
Stitching different character motions is one of the most commonly used techniques as it allows the user to make new animations that fit one's purpose from pieces of motion. However, current motion stitching methods often produce unnatural motion with foot sliding artefacts, depending on the performance of the interpolation. In this paper, we propose a novel motion stitching technique based on a recurrent motion refiner (RMR) that connects discontinuous locomotions into a single natural locomotion. Our model receives different locomotions as input, in which the root of the last pose of the previous motion and that of the first pose of the next motion are aligned. During runtime, the model slides through the sequence, editing frames window by window to output a smoothly connected animation. Our model consists of a two-layer recurrent network that comes between a simple encoder and decoder. To train this network, we created a sufficient number of paired data with a newly designed data generation. This process employs a K-nearest neighbour search that explores a predefined motion database to create the corresponding input to the ground truth. Once trained, the suggested model can connect various lengths of locomotion sequences into a single natural locomotion.  相似文献   

20.
We present a method to accelerate the visualization of large crowds of animated characters. Linear‐blend skinning remains the dominant approach for animating a crowd but its efficiency can be improved by utilizing the temporal and intra‐crowd coherencies that are inherent within a populated scene. Our work adopts a caching system that enables a skinned key‐pose to be re‐used by multi‐pass rendering, between multiple agents and across multiple frames. We investigate two different methods; an intermittent caching scheme (whereby each member of a crowd is animated using only its nearest key‐pose) and an interpolative approach that enables key‐pose blending to be supported. For the latter case, we show that finding the optimal set of key‐poses to store is an NP‐hard problem and present a greedy algorithm suitable for real‐time applications. Both variants deliver a worthwhile performance improvement in comparison to using linear‐blend skinning alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号