首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于经验模式分解的单通道机械信号盲分离   总被引:8,自引:0,他引:8  
盲源分离是机械设备复合故障诊断的一种有效方法,经验模式分解是非平稳信号分析的有力工具,它将非线性、非平稳信号分解成为一系列线性、平稳的本征模函数信号。在机械故障信号盲分离中,单通道机械信号盲分离是一个病态问题。针对单通道机械信号盲分离的困境,综合盲源分离和经验模式分解各自的优点,提出基于经验模式分解的单通道机械信号源数估计和盲源分离方法。针对单通道机械观测信号进行经验模式分解,并将单通道信号和其本征模函数组成多维信号,利用奇异值分解估计机械源数目,根据源信号数目重组多通道机械混合信号,并利用FastICA算法实现机械信号的盲分离。将该方法应用于轴承和齿轮的仿真研究,正确分离出轴承和齿轮源信号,仿真研究表明,它能很好地解决单通道机械信号的源数估计和盲源分离难题。  相似文献   

2.
采用声发射技术评估疲劳裂纹扩展状态时,评估结论会受到其它类型声发射信号和噪声的干扰.针对上述问题,在分析经验模态分解和独立分量分析特点的基础上,提出集合导数优化经验模态分解与独立分量分析相结合的声发射信号去噪盲分离方法,用于疲劳裂纹扩展声发射信号的处理.分别进行模拟声发射信号和疲劳裂纹扩展试验,采用上述方法对采集声发射信号进行去噪盲分离,结果表明:基于集合导数优化经验模态分解与独立分量分析的声发射信号去噪方法可有效去除噪声信号的干扰,准确分离出疲劳裂纹扩展声发射信号,为进行含裂纹结构的疲劳损伤状态评估和剩余寿命预测奠定基础.  相似文献   

3.
传统盲源分离方法要求传感器观测信号数目不小于源信号数目,且在源信号平稳、相互独立的前提下,才能得到较为准确的分离信号,但对于发动机缸盖振动非平稳信号,由于激励源较多,这些条件不易满足。为实现缸盖振动信号盲源分离,提出了基于阶比滤波的单通道缸盖振动信号盲源分离方法。利用燃爆激励信号频率随转频变化的先验信息,通过阶比滤波得到阶比分量,将阶比分量和单通道信号组成多维观测信号,通过快速独立成分分析方法得到了缸盖振动非平稳信号的分离信号。仿真和应用研究证明了该方法的有效性。  相似文献   

4.
针对滚动轴承早期故障特征信号提取困难的问题,提出了一种改进完备集成经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition, ICEEMD)和独立分量分析(Independent Component Analysis, ICA)联合故障诊断方法。该方法利用峭度准则将经ICEEMD得到的固有模态分量(Intrinsic Mode Function, IMF)重构后结合快速独立分量分析(Fast Independent Component Analysis, FastICA)进行降噪解混,明显降低被测信号中的噪声,并且在故障特征频率处能量幅值取得最大值,便于辨识故障特征。通过试验研究分析,表明该方法可以明显降低噪声干扰,突出故障频率成分。和ICEEMD与包络谱结合的方法对比,信噪比提高了29.54%,能更准确地识别故障特征,达到对滚动轴承故障的判别需求,从而为轴承故障特征提取提供了一种新思路。  相似文献   

5.
滚动轴承故障信号特征往往受背景噪声影响而难以准确提取,集合经验模式分解能将源信号有效分解出具有真实物理意义的本征模态分量,提高故障特征的诊断精度,盲源分离技术能够分离故障信号进而提取故障特征。将集合经验模态分解与盲源分离技术相结合,通过相关系数的计算和敏感因子的数值判断合理选用源信号的分量,构建出噪声信号,再通过盲源分离技术,分离噪声信号。仿真分析和实验表明,此方法可以成功的分离出典型的轴承故障特征,可有效提高轴承故障诊断效果。  相似文献   

6.
针对一维观测矩阵的极度欠定盲分离模型,结合盲源分离和总体经验模式分解的优点,利用总体经验模式分解将单通道信号转化为固有模态矩阵,重组观测矩阵,再通过近似联合对角化实现信号的盲分离。数据仿真说明该方法能提取低信噪比下的轴承故障信息。实验中,对2种不同故障的轴承进行故障诊断,从而进一步证明了该方法的有效性。  相似文献   

7.
针对轴承故障信号易受环境噪声影响、信噪分离难的问题,提出了一种基于经验模态分解和独立成分分析相结合去噪的滚动轴承故障诊断方法。给出了该方法在故障诊断信号去噪领域的应用原理、方法步骤和评价指标;并通过仿真信号和实际轴承的滚动体故障、内圈故障和外圈故障信号进行了分析和故障诊断,验证了该方法在轴承故障信噪分离中的有效性。结果表明,采用文中提出的方法消噪后提取故障信号特征频率,压制了噪声干扰,能明显区别出轴承的状态及其故障的类型,有效提高了轴承故障诊断的准确性。  相似文献   

8.
针对转子系统采集得到的非平稳信号中存在着较多噪声,导致分解原信号易出现模态混叠和虚假模态现象,使得降噪提纯效果不理想,特征量无法识别等问题,提出了一种将改进自适应噪声的完备集合经验模态分解(Improved Com-plete Ensemble EMD with Adaptive Noise,ICEEMDAN)和快速独...  相似文献   

9.
对换热管污垢回波振型特征有效提取是实现污垢厚度定量检测的关键。针对薄层污垢回波声束能量不集中,易产生模态混叠等特点,提出一种基于改进CEEMD的小波收缩阈值信号处理方法。首先引入夹角余弦计算原始信号与固有模态函数相似程度,判断信号和噪声主导模态分界点,并结合能量密度谱判断分界点选取准确性,然后利用小波收缩阈值方法拾取噪声主导模态中的细节信息,最后重构得到降噪后信号。仿真和实验结果表明:该方法分界点判断准确性较高,去噪效果优于传统小波阈值方法,数值模拟与实验结果一致,对薄层污垢回波振型特征提取有重要指导意义。  相似文献   

10.
孟宗  王晓燕  马钊 《中国机械工程》2015,26(20):2751-2756
针对单通道振动信号盲源分离是一个病态问题,且传统的振动信号盲源分离方法往往忽略信号的非平稳性的问题,提出了一种融合小波分解与时频分析的单通道振动信号盲源分离方法。首先利用小波分解与重构将单通道信号转化为多通道信号,解决了盲源分离的欠定问题;然后利用基于时频分析的盲源分离算法分析非平稳信号,得到源信号的估计信号,实现了非平稳信号盲源分离。仿真和实验结果表明,该方法可以有效地解决单通道非平稳振动信号的盲源分离问题。  相似文献   

11.
基于灰色准则与EEMD的滚刀振动信号降噪方法   总被引:1,自引:0,他引:1       下载免费PDF全文
工程现场采集的滚刀振动信号掺杂噪声,致使信号特征难以提取。提出一种基于灰色准则与集合经验模态分解(EEMD)的滚刀振动信号降噪方法。首先将原信号进行EEMD分解得到若干个特征模态函数(intrinsic mode function,IMF),再根据提出的灰色准则对IMF分量进行极性一致化处理、均值化处理,计算出IMF1与其他IMF分量的灰色关联度,并按照灰色关联度将IMF分量降序排列,然后选择降序排列中前一半IMF分量进行软阈值处理,最终将处理后的IMF分量、未处理的IMF分量及余项进行重构,得到降噪后的信号。通过不同初始信噪比的仿真信号和实际加工中的滚刀振动信号验证了本方法的可行性和有效性,同时与EEMD结合相关系数降噪法、小波软阈值降噪法进行了比较,结果表明本方法的降噪效果更优。  相似文献   

12.
基于经验模分解的陀螺信号去噪   总被引:1,自引:0,他引:1  
陀螺随机漂移是影响寻北精度的重要因素,小波消噪方法对小波基和分解尺度等因素依赖性较强。提出了一种新的基于功率谱密度准则的经验模态分解(EMD)去噪方法,可有效解决传统EMD去噪自适应滤波器截止阶数难以确定的难题,该方法将经验模态分解得到的固有模态函数(IMF)分为信号分量起主导作用模态与噪声分量起主导作用模态,并对噪声分量起主导作用的模态进行类似小波软阈值去噪的方法进行滤波,然后与信号分量起主导作用的模态共同对信号重建实现去噪。将该方法应用于测试信号与陀螺信号的去噪,结果表明:新方法能有效地判断噪声与信号起主导作用的模态分界点,具有良好的去噪效果,且不受主观参数的影响,具有自适应性。  相似文献   

13.
使用声信号来诊断轴承故障越来越受到重视.针对滚动轴承故障信号的强背景噪声特点,提出一种基于谱峭度和互补集合经验模态分解(CEEMD)的故障特征提取方法.该方法首先对滚动轴承声信号进行快速谱峭度计算并进行带通滤波预处理,使滚动轴承声信号变得简单且噪声小,故障冲击成分明显;然后利用CEEMD将滤波信号进行分解运算,得到一系...  相似文献   

14.
基于CEEMDAN-PE的心冲击信号降噪方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
心冲击信号(BCG)是反应心脏力学特征的生理信号,能实现无电极束缚条件下的连续采集测量,然而BCG信号微弱且极易受到干扰,测量时经常会淹没在噪声中。为了有效识别BCG信号,提出一种基于自适应噪声的完全集合经验模态分解(CEEMDAN)联合排列熵(PE)的BCG降噪方法。首先,将采集到的BCG信号通过CEEMDAN分解得到一系列按频率由高到低的固有模态函数(IMF)。其次,通过PE计算各个IMF分量的值并确定有效信号的阈值范围,从而滤除信号中的高频噪声和基线漂移。最后实验结果显示,降噪后信号的幅频特性得到明显改善且信噪比较传统方法有明显提高,证明了本文降噪方法效果显著,能够有效还原BCG信号特征。  相似文献   

15.
研究提出了一种基于经验模式分解和多元统计过程控制的滚动轴承故障诊断方法,实现了对滚动轴承常见故障的分类研究。主要内容包括:首先,运用EMD将滚动轴承故障信号分解成不同频率尺度的单分量固有模态函数,获取了不同频率范围的信号成分;其次,对各个IMF分量进行主成分分析并建立稳态数据的主元模型,计算相应的T~2控制限;最后,将待检测轴承信号的各个IMF分量代入主元模型,获取相应的T2值从而实现故障的判断。在故障检测的基础上,详细分析了各类滚动轴承故障与不同IMF分量间的相关性,确定了故障敏感主元向量,实现了故障种类的判断。研究为滚动轴承故障特征提取和故障分类提供了理论基础和有效方法。  相似文献   

16.
毋文峰  李浩  朱露 《中国机械工程》2015,26(22):3028-3033
针对机械设备的故障特征信息提取问题,提出了基于奇异值融合的机械盲信息提取方法。首先,由机械振动测量信号分离振动源信号,并进行包络解调组成包络信号矩阵,进而进行奇异值分解,提取矩阵的奇异值均值和奇异值熵作为故障特征信息;然后,针对分离矩阵直接进行奇异值分解,提取奇异值作为故障特征信息;最后,将包络信号矩阵奇异值均值、奇异值熵和分离矩阵奇异值进行特征层信息融合作为机械设备的故障特征信息。将该方法应用于液压齿轮泵可以有效地提取机械设备盲特征信息。  相似文献   

17.
基于相关系数的EEMD转子信号降噪方法   总被引:3,自引:0,他引:3  
针对转子振动信号周期性强的特点,应用集合经验模式分解(ensemble empirical mode decomposition,简称EEMD)对转子振动信号降噪过程中固有模式函数(intrinsic mode functions,简称IMF)分量的选取问题,提出了基于相关系数的EEMD降噪方法。首先,对原始信号进行EEMD分解得到IMF分量,并计算各IMF分量自相关函数与原信号自相关函数的相关系数;然后,根据相关系数选择相应的IMF分量重构信号最终达到对原信号降噪的目的;最后,对比了EEMD过程中不同加噪次数对降噪效率和效果的影响,给出了加噪次数的设置方法。仿真信号和转子振动信号的降噪结果表明了该降噪方法的可行性和有效性。  相似文献   

18.
一种旋转机械振动信号的盲源分离消噪方法   总被引:1,自引:0,他引:1  
为了消除旋转机械振动信号中不同类型的噪声,提出了一种基于虚拟信号(virtual signal,简称VS)的多级独立分量分析(independent component analysis,简称ICA)的消噪方法。通过引入与测量噪声匹配的虚拟噪声通道,将单通道观测信号扩展为多通道观测信号,用独立分量分析方法消除与数据采集系统相关的测量噪声。将振源信号的组合(有用信号)视为一个虚拟源,对消除了测量噪声的两通道观测信号再次用独立分量分析方法实现有用信号和背景噪声的分离,从而达到消除背景噪声的目的。试验表明,该方法可以得到很好的消噪结果,有效提高信号的信噪比。  相似文献   

19.
侵彻过载信号成份复杂,传统盲源分离方法无法有效提取弹体侵彻板靶特征,基于此提出一种不受测试传感器数量限制、具有源数估计的侵彻过载信号盲源分离方法。首先,对单通道测试信号进行总体经验模态分解,将分解后的固有模态与原信号组成多维信号;其次,对组成的多维信号奇异值分解,以"前K次奇异值占优"法则估计信号振源个数,利用"最大互相关系数法"筛选最优IMF函数与原信号重组构造多通道混合信号;最后,对多通道混合信号白化处理和联合近似对角化,计算酉矩阵获得测试信号的混合估计。将其用于单通道侵彻过载信号的特征提取,获得了与源信号相关度为0.974 7的加速度特征信号。与现有方法相比,该方法能有效分离出单通道侵彻过载特征信号,并且信号处理过程具有的自适应特性也解决了不同弹靶工况下过载信号滤波频率的选择困难问题。  相似文献   

20.
激光超声信号去噪的经验模态分解实现及改进   总被引:1,自引:2,他引:1  
考虑激光超声检测过程中噪声对缺陷和材料特征分析和检测的影响,本文以激光超声信号去噪为目的,研究了基于经验模态分解(EMD)的激光超声信号时间尺度滤波过程。针对分解过程中固有模态函数(IMF)上有用信号与噪声的混叠现象对重构信噪比的影响,结合信号多模态和宽频带的特点,提出了基于峰度检验策略的时域加窗方法。该方法通过局部峰度检验判断重构起点附近IMF中有用信号的位置及信噪分界点,利用Turkey-Hanning窗保存有用信号,抑制噪声,实现信号与噪声的解混叠,改善重构信号质量。仿真和实验结果表明,该方法具有良好的自适应性,有效识别并分离了信号和噪声成分,信噪改善比达14 dB以上,相对原始方法提升了3 dB,相对性能增强了20%,并且改进效果随信号受污染程度的加重而愈发突出,有望在高噪声水平下发挥优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号