首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovarian function was compared between nulliparous heifers (n = 29; 10 to 16 mo old) and lactating Holstein cows (n = 31; 55.9 +/- 3.5 d postpartum). Follicular dynamics, corpus luteum growth, and regression, and serum steroid concentrations were evaluated through ultrasonography and daily blood sampling. Most heifers (27 of 29) but only 14 of 31 cows had typical spontaneous estrous cycles after cycles were initiated. Twelve cows had atypical cycles, and 5 became anovulatory during the study. The 12 cows with atypical estrous cycles had low serum estradiol after luteolysis and failed to ovulate the dominant follicle present at luteolysis. Heifers and cows with typical cycles were compared directly. Interovulatory intervals were similar between heifers (22.0 +/- 0.4 d) and cows (22.9 +/- 0.7 d). Those animals had estrous cycles with either 2 (15 heifers; 11 cows), 3 (9 heifers; 2 cows), or 4 follicular waves (3 heifers; 1 cow). Cows ovulated later after luteolysis than heifers (5.2 +/- 0.2 vs. 4.6 +/- 0.1 d, respectively), and had more multiple ovulations (17.9 vs. 1.9%). Maximal serum estradiol concentration preceding ovulation was lower in cows than in heifers (7.9 +/- 0.8 vs. 11.3 +/- 0.6 pg/mL) even though ovulatory follicles were larger in cows (16.8 +/- 0.5 vs. 14.9 +/- 0.2 mm). Similarly, maximal serum progesterone concentration was lower for cows (5.6 +/- 0.5 vs. 7.3 +/- 0.4 ng/mL), whereas maximal volume of luteal tissue was larger for cows than heifers (11,120 +/- 678 vs. 7303 +/- 308 mm3). Thus, higher incidence of reproductive anomalies in lactating cows, such as low conception rate, ovulation failure, delayed ovulation, and multiple ovulations, may be due to lower circulating steroid concentrations in spite of larger ovulatory follicles and luteal structures.  相似文献   

2.
Two experiments in two seasons evaluated fertilization rate and embryonic development in dairy cattle. Experiment 1 (summer) compared lactating Holstein cows (n = 27; 97.3 +/- 4.1 d postpartum [dppl; 40.0 +/- 1.5 kg milk/d) to nulliparous heifers (n = 28; 11 to 17 mo old). Experiment 2 (winter) compared lactating cows (n = 27; 46.4 +/- 1.6 dpp; 45.9 +/- 1.4 kg milk/d) to dry cows (n = 26). Inseminations based on estrus included combined semen from four high-fertility bulls. Embryos and oocytes recovered 5 d after ovulation were evaluated for fertilization, embryo quality (1 = excellent to 5 = degenerate), nuclei/embryo, and accessory sperm. In experiment 1, 21 embryos and 17 unfertilized oocytes (UFO) were recovered from lactating cows versus 32 embryos and no UFO from heifers (55% vs. 100% fertilization). Embryos from lactating cows had inferior quality scores (3.8 +/- 0.4 vs. 2.2 +/- 0.3), fewer nuclei/embryo (19.3 +/- 3.7 vs. 36.8 +/- 3.0) but more accessory sperm (37.3 +/- 5.8 vs. 22.4 +/- 5.5/embryo) than embryos from heifers. Sperm were attached to 80% of UFO (17.8 +/- 12.1 sperm/UFO). In experiment 2, lactating cows yielded 36 embryos and 5 UFO versus 34 embryos and 4 UFO from dry cows (87.8 vs. 89.5% fertilization). Embryo quality from lactating cows was inferior to dry cows (3.1 +/- 0.3 vs. 2.2 +/- 0.3), but embryos had similar numbers of nuclei (27.2 +/- 2.7 vs. 30.6 +/- 2.1) and accessory sperm (42.0 +/- 9.4 vs. 36.5 +/- 6.3). From 53% of the flushings from lactating cows and 28% from dry cows, only nonviable embryos were collected. Thus, embryos of lactating dairy cows were detectably inferior to embryos from nonlactating females as early as 5 d after ovulation, with a surprisingly high percentage of nonviable embryos. In addition, fertilization rate was reduced only in summer, apparently due to an effect of heat stress on the oocyte.  相似文献   

3.
Anestrus is a major reproduction problem in pasture-based dairy operations that results in poorer reproductive outcomes than herdmates detected in estrus before the start of the seasonal breeding program. The objective of the current study was to assess a combined progesterone and estradiol benzoate treatment program including resynchrony with no treatment. Anestrous pasture-fed dairy cattle (n = 756) in 9 herds were blocked by herd and age and assigned within sequentially presented pairs of cows to be treated with an intravaginal progesterone-releasing insert for 8 d plus 2 mg of estradiol benzoate injected i.m. at insert insertion and 1 mg of estradiol benzoate injected 1 d after insert removal (d −1). Those cows detected in estrus from 0 to 3 d had a used progester-one-releasing insert reinserted for 6 d commencing on d 16 with 0.5 mg of estradiol benzoate injected i.m. 1 d after insert removal (treatment). The other cow within the pair was left as an untreated control (control). Treatment increased the risk of insemination and pregnancy by 28 d into the breeding program and resulted in conception 15 d earlier compared with controls. In contrast, treatment did not increase the risk of pregnancy after 56 d into the breeding program or at the end of the breeding season. It is concluded that treatment of anestrous dairy cattle with progesterone and estradiol benzoate combined with reinsertion of the progesterone insert resulted in earlier conception, but no difference in the final pregnancy rate compared with no treatment.  相似文献   

4.
Apparent digestibility and retention of Mn by dairy cows was used to compare 2 sources of Mn and to estimate Mn requirements. In experiment 1, Holstein cows at dry-off (60 d prepartum) were fed a basal diet with no supplemental Mn (43 mg of Mn/kg of dry matter) and received a daily bolus of 0 or 200 mg/d supplemental Mn from MnSO4 or from Mn-Met (6 cows per treatment) until parturition. Approximately 30 d before parturition, cows were moved to metabolism stalls for total collection of feces and urine. No differences were observed between Mn sources, but apparent absorption of Mn (6.4 vs. 2.3%) tended to be greater, and apparent retention of Mn (44 vs. 12 mg/d) was greater, for cows given supplemental Mn compared with control cows. In the second experiment, apparent Mn digestibility data from 8 experiments conducted with lactating dairy cows (39 dietary treatments and 160 observations) were combined with data from experiment 1. The regression equation of intake of digestible Mn on Mn intake (i.e., Lucas test) was as follows: intake of digestible Mn (mg/d) = −151 + 0.26 × Mn intake (mg/d). Based on that equation, Mn intake had to equal 580 mg/d to meet the metabolic fecal Mn requirement. The corresponding dietary concentration, assuming dry matter intakes of 21 and 12 kg/d for lactating and dry cows, respectively, were 28 and 49 mg/kg dry matter. These concentrations are approximately 1.6 and 2.7 times higher than those needed to meet the Mn requirements for lactating and dry cows, respectively, as calculated using the 2001 National Research Council dairy requirements model.  相似文献   

5.
To investigate the correlation between lactation and thyroid hormone metabolism, the authors studied concentrations of total and free thyroxine (T4 and fT4), triiodothyronine (T3 and fT3), and reverse triiodothyronine (rT3) in plasma and milk, as well as liver and mammary gland 5'-deiodinase (5'D) activity in dry, early, middle, and late lactating dairy cows. Cows in early lactation show lower plasma levels of T4 and rT3 than dry, middle, and late lactating animals, whereas T3 shows the lowest plasma levels in the dry period; free T4 and T3 show a similar pattern. In early lactation there is a clear decrease in liver 5'D associated with a notable increase in mammary 5'D. Concentrations of T4 and T3 in milk drop significantly in the first few days after delivery, whereas rT3 increases up to the fourth month. The findings suggest a relationship between the hypothyroid status of lactating cows and the rearrangement of organ-specific 5'-deiodinase activity related to the maintenance of the udder's function.  相似文献   

6.
The objectives of this study were to evaluate the effect of 3 methods of resynchronization of estrus and ovulation for lactating dairy cows of unknown pregnancy status on conception rate and time to pregnancy. Holstein cows (n = 495) were randomly assigned to 1 of 3 treatments: 1) control (n = 167), resynchronization with a timed AI protocol upon diagnosis of nonpregnancy on d 31 after preenrollment AI (PAI); 2) CIDR-G (n = 159), use of an intravaginal progesterone insert from d 14 to 21 after AI, with AI at estrus from d 21 to 24 and initiation of a timed AI protocol on d 24 after AI in cows not reinseminated; 3) CIDR-G + ECP (n = 169), the same treatment as CIDR-G but with an injection of 1 mg of estradiol cypionate at the time of progesterone insert removal. Cows were continuously reenrolled in the same treatment until diagnosed as pregnant, which resulted in a total of 1,148 AI (495 PAI and 653 resynchronized AI; RAI). Blood was collected from 1,001 cows on d 14, 21, and 24 after each AI for analysis of progesterone, and ovaries were scanned on d 21, 24, and 31 after AI. The presence of an active corpus luteum was presumed based on progesterone ≥1 ng/mL. Pregnancy was diagnosed by ultrasonography on d 31 and 61 after AI. The presence of an active corpus luteum and the incidence of luteolysis were similar for all treatments from d 14 to 24; however, luteolysis increased in the CIDR-G + ECP treatment from d 21 to 24. Conception rates for the PAI and all AI were similar on d 31 and 61 after insemination. Conception rates at 31 and 61 d after the RAI were also similar among treatments. Overall pregnancy loss for the PAI, RAI, and all AI were similar for all treatments. The accuracy of estrous detection, based on progesterone concentration within 2 d of detection of estrus, was similar for all treatments for the RAI and averaged 95.3%. The estrus-detection rate (EDR) decreased for the CIDR-G and CIDR-G + ECP treatments from d 14 to 21, but increased from d 21 to 24 compared with control cows; however, the EDR was smaller for cows in the CIDR-G treatment during the entire resynchronization period compared with those in the CIDR-G + ECP and control groups. The reinsemination interval was reduced in cows receiving the CIDR-G + ECP treatment compared with control cows because of increased EDR after removal of the intravaginal insert; however, the interval from study enrollment to pregnancy was not different among treatments. These results indicate that the reproductive performance of dairy cows did not differ among the 3 resynchronization treatments evaluated.  相似文献   

7.
The objective was to determine whether transfer of fresh or vitrified embryos produced in vitro with sex-sorted semen improves pregnancy and calving rates during summer in lactating dairy cows compared with artificial insemination (AI). Lactating dairy cows (n = 722) were enrolled during summer months at 2 commercial dairies in Central Texas and randomly assigned to 1 of 3 treatments: AI with conventional semen (n = 227), embryo transfer-vitrified (ET-V; n = 279) or embryo transfer-fresh (ET-F; n = 216). Embryos were produced in vitro using sex-sorted semen and with Block-Bonilla-Hansen-7 culture medium. For vitrification, grade 1 expanded blastocysts were harvested on d 7 after fertilization and vitrified using the open-pulled straw method. Fresh embryos were grade 1 blastocysts and expanded blastocysts harvested on d 7 after fertilization. Cows were submitted to the Ovsynch56 protocol: d −10 GnRH, d −3 PGF, d −1 GnRH and d 0 timed AI; or Select Synch protocol: d −9 GnRH, d −2 PGF, and AI following detected estrus (day of AI = d 0). On d 7, all cows were examined for presence of a corpus luteum (CL). A vitrified or fresh embryo was transferred to cows with CL in ET-V and ET-F groups. Cows were considered synchronized if progesterone was <1 ng/mL on d 0 and a CL was present on d 7. At d 40 ± 7 of gestation, the percentage of cows pregnant was greater for the ET-F compared with the ET-V and AI groups among all cows (42.1 vs. 29.3 and 18.3%, respectively) and synchronized cows (45.5 vs. 31.6 and 24.8%, respectively). Also, the percentage of cows pregnant was greater for the ET-V than the AI group among all cows and tended to be greater among synchronized cows. At d 97 ± 7 of gestation, the percentage of cows pregnant among all cows was greater for ET-F and ET-V groups than for the AI group (36.4 and 25.7 vs. 17.0%, respectively) and the percentage for the ET-F group was greater than for the ET-V group. Among synchronized cows, the percentage of cows pregnant was significantly increased for the ET-F group than for ET-V and AI groups (39.4 vs. 27.8 and 23.1%, respectively) and no difference was found between ET-V and AI groups. No effect of treatment on embryo loss was observed. The percentage of cows with live births was significantly increased for the ET-F than for ET-V and AI groups among all cows (27.5 vs. 17.1 and 14.6%, respectively) and synchronized cows (29.9 vs. 18.5 and 20.0%, respectively). The percentage of cows giving birth to a live heifer was significantly increased for the ET-F and ET-V groups compared with the AI group among all cows (79.1 and 72.5 vs. 50.0%, respectively) and synchronized cows (79.1 and 72.5 vs. 50.0%, respectively). No difference existed between ET-F and ET-V groups for percent live heifer births but both were greater than for the AI group. The transfer of fresh embryos produced in vitro using sex-sorted semen to lactating dairy cows during summer can effectively increase the percentage of cows that establish pregnancy and also the percentage of cows that give birth to a live heifer compared with percentages from AI with conventional semen.  相似文献   

8.
The objective of this study was to determine effects of monensin on ovarian follicular development and reproductive performance in postpartum dairy cows. Forty-eight multiparous Holstein cows were randomly assigned to receive either a control total mixed ration (n = 24) or the same diet plus 22 mg of monensin/kg (n = 24) from 21 d before anticipated calving until cows were either confirmed pregnant or were >180 d postpartum. Monensin had no effect on development of the first dominant follicle postpartum or the numbers of class 1 (3 to 5 mm), 2 (6 to 9 mm), or 3 (10 to 15 mm) follicles. Control cows had more class 4 (>15 mm) follicles at 10 to 13 d postpartum than cows in the monensin group. The first dominant follicle postpartum ovulated, regressed, or became cystic unrelated to differences between diets. However, the first ovulation postpartum occurred earlier in monensin-fed cows than in the control group (27.2 +/- 2.1 d vs. 32.4 +/- 1.5 d), with no dietary effects on the diameter of the ovulating follicle. Similarly, treatments did not differ in the proportion of cows with 2 or 3 waves of ovarian follicular development per cycle, nor in the number of follicles of all classes during the breeding period. Times of ovulation following treatment with prostaglandin F2alpha were not different between dietary groups. Pregnancy rates after timed artificial insemination were similar between diets. Supplementation with monensin resulted in a shorter postpartum interval to first ovulation but did not affect other reproductive measures in healthy, lactating dairy cows.  相似文献   

9.
Objectives of this study were to critically review randomized controlled trials, evaluate the effectiveness of supplementation with biotin on milk yield and composition and hoof health in lactating dairy cows, explore sources of heterogeneity among studies, and evaluate publication bias. Quantitative assessments can increase the statistical power with which we study the effect of treatments, such as biotin, on outcomes. A total of 9 papers, with 6 production and 3 hoof health studies, met the eligibility criteria for meta-analysis. Eight studies evaluated various hoof lesions in biotin-supplemented cows that did not meet the inclusion criteria. Eleven comparisons were made of milk production responses to biotin treatment. Data extracted included the number of cows in control and treatment groups, measures of variance of responses (standard error or standard deviation) and P-values. Other data obtained included the duration of treatment before and after calving, parity, breed of cow, type and dose of biotin, delivery method of supplementation, and types of diets. Biotin increased milk production by 1.29 kg per head per day (95% confidence interval = 0.35 to 2.18 kg) with no evidence of heterogeneity (I2 = 0.0%). Treatment did not affect milk fat or protein percentages, and a trend to increase fat and protein yields was observed. Milk production and composition results were not influenced by duration of treatment before calving, parity, or diet type. Assessment of biotin supplementation on hoof health indicated that more studies had improved rather than negative or neutral outcomes. The effect of biotin treatment on milk production was relatively large and the effects on fat and protein yields, although not significant, were consistent in direction and magnitude with the milk response. The hoof health responses to biotin should encourage further studies to more effectively define the nature of these responses using consistent criteria for examination of hoof conditions and lameness.  相似文献   

10.
The objective of the study was to determine the effect of active dry Saccharomyces cerevisiae (ADSC) supplementation on dry matter intake, milk yield, milk components, ruminal pH, and microbial community during a dietary regimen that leads to subacute ruminal acidosis (SARA). Sixteen multiparous, rumen-cannulated lactating Holstein cows were randomly assigned to 1 of 2 dietary treatments that included ADSC (Biomate; AB Vista, Marlborough, UK; 8 × 1010 cfu/head per day) or control. During wk 1 to 6, all cows received a high-forage (HF) diet (77:23, forage:concentrate). Cows were then abruptly switched during wk 7 to a high-grain (HG) diet (49:51, forage:concentrate) and remained on the HG until the end of wk 10. Feed intake and milk yields were recorded daily. Ruminal pH was recorded continuously using an indwelling system for 1 to 2 d per week during the pre-experimental phase, and wk 6, 7, and 10. Ruminal digesta samples were collected at the end of the experiment and analyzed for relative change in microbial communities using real-time quantitative PCR. Cows were considered to have SARA if the duration below pH 5.6 was ≥300 min/d. Ruminal pH during wk 6 (HF plateau) was not different across treatments (15 ± 46 min/d at pH <5.6). The dietary regimen successfully induced SARA during wk 7 (transition from HF to HG diet), and ruminal pH (551 ± 46 min/d at pH <5.6) was not different across treatments. However, cows receiving ADSC had an improved ruminal pH (122 ± 57 vs. 321 ± 53 min/d at pH <5.6) during wk 10 (HG plateau) compared with control. Additionally, cows receiving ADSC had a better dry matter intake (23.3 ± 0.66 vs. 21.6 ± 0.61 kg/d) and 4% fat-corrected milk yield (29.6 ± 1.2 vs. 26.5 ± 1.2 kg/d) than control cows during the HG phase (wk 8 to 10). During HG feeding, cows receiving ADSC had greater total volatile fatty acid and propionate concentrations (175 ± 7.5 vs. 154 ± 7.5 and 117 ± 6.1 vs. 94 ± 5.7 mM for ADSC and control, respectively) and lower acetate:propionate ratio (0.26 ± 0.5 vs. 0.36 ± 0.05 for ADSC and control, respectively). Microbial analyses conducted on samples collected during wk 10 showed that cows supplemented with S. cerevisiae had a 9-fold, 2-fold, 6-fold, 1.3-fold, and 8-fold increase in S. cerevisiae, Fibrobacter succinogenes, Anaerovibrio lipolytica, Ruminococcus albus, and anaerobic fungi, respectively, which suggested an increase in cellulolytic microbes within the rumen. Cows supplemented with ADSC had 2.2-fold reduction in Prevotella albensis, which is a gram-negative bacterium predominant during SARA. Prevotella spp. are suggested to be an important source of lipopolysaccharide responsible for inflammation within the rumen. Cows supplemented with ADSC had a 2.3-fold increase in Streptococcus bovis and a 12-fold reduction in Megasphaera elsdenii. The reduction in M. elsdenii may reflect lower concentration of lactic acid within the rumen for ADSC cows. In conclusion, ADSC supplementation to dairy cows was demonstrated to alleviate the condition of SARA caused by abrupt dietary changes from HF to HG, and can potentially improve rumen function, as indicated by greater numbers of cellulolytic microorganisms within the rumen.  相似文献   

11.
Our objectives were to compare reproductive responses of dairy cows receiving timed artificial insemination (AI) either at 48 or 72 h after induction of luteolysis and supplemented or not with estradiol cypionate (ECP). Holstein cows (971) had their estrous cycles presynchronized with injections of PGF at 37 and 51 d in milk (DIM) and then received an injection of GnRH at 64 DIM and an injection of PGF at 71 DIM. Cows were then assigned to a 2 × 2 factorial randomized block experiment; cows in the CoSynch 48 h (CoS48) received a final injection of GnRH concurrent with timed AI 48 h after PGF, whereas cows in the CoSynch 72 h (CoS72) received GnRH and timed AI 72 h after PGF. Half of the cows in each CoSynch protocol received an injection of 1 mg of ECP 24 h after PGF. Therefore, the 4 treatments were as follows: CoS48-NECP (n = 240), CoS72-NECP (n = 246), CoS48-ECP (n = 245), and CoS72-ECP (n = 240). Blood was sampled at 7 d before and at the first GnRH of the CoSynch from all cows for analysis of progesterone concentration in plasma. Cows were classified as anovular when progesterone was less than 1.0 ng/mL in both samples. Blood was also sampled during proestrus from a subset of 123 cows to measure concentrations of estradiol and at 7 d after timed AI to measure concentrations of progesterone. Ovaries from the same subset of 123 cows were examined by ultrasonography to determine ovulatory follicle diameter and incidence of ovulation. Pregnancy was diagnosed at 40 and 68 d after AI. Prevalence of cyclic cows was 72.4% and was similar among treatments. Concentrations of estradiol increased after ECP treatment and at 72 h of proestrus with CoS72. Pregnancy at 40 and 68 d after AI and pregnancy loss were not affected by timing of AI or supplemental ECP. Delaying timed AI to 72 h and supplementation with ECP increased the proportion of cows displaying estrus at AI, and cows detected in estrus had increased pregnancy per AI associated with improved ovulation and increased postovulatory progesterone concentration. These results indicate that extending the proestrus by delaying timed AI from 48 to 72 h plus supplemental ECP, despite increased expression of estrus at timed AI, did not improve reproductive performance of lactating dairy cows at first AI.  相似文献   

12.
Using an activity monitoring system (AMS) equipped with an accelerometer, 2 experiments were conducted to test the hypotheses that (1) enhancing progesterone before inducing luteolysis or (2) exposing cows to estradiol cypionate (ECP) or testosterone propionate (TP) after luteolysis would increase occurrence and intensity of estrus. Our goal was to determine if more cows could be detected in estrus by an AMS compared with other estrus-detection aids. In experiment 1, cows (n = 154) were fitted with both an AMS collar and a pressure-sensitive, rump-mounted device (HeatWatch; HW) and assigned to 3 treatments: (1) no CL + progesterone insert (CIDR) for 5 d, (2) CL only, or (3) CL + 2 CIDR inserts for 5 d to achieve a range in concentrations of progesterone. Prostaglandin F was administered to all cows upon CIDR insert removal or its equivalent. Progesterone concentration up to 72 h posttreatment was greatest in CL + 2 CIDR, followed by CL only, and no CL + CIDR cows. Estrus occurred 14 to 28 h earlier in no CL + CIDR compared with CL-bearing cows. Estrus intensity was greater for CL + 2 CIDR than for CL-only cows. The AMS and HW detected 70 and 59% of cows defined to be in estrus, respectively. In experiment 2, cows (n = 203) were equipped with both an AMS and a friction-activated, rump-mounted patch (Estrotect patch) and assigned to receive 1 mg of ECP, 2 mg of TP, or control 24 h after PGF. Concentrations of estradiol 24 and 48 h after treatment were greater in ECP cows compared with controls. Estrus expression detected by AMS or patches in cows defined to be in estrus tended to be greater or was greater for ECP compared with controls, respectively. Compared with controls and in response to TP or ECP, estrus occurred 8 to 18 h earlier and was of greater intensity for ECP cows, respectively. The AMS and patches determined 73 and 76% of cows defined to be in estrus, respectively. Of cows exposed to the AMS, HW, or patches, 70, 61, and 75%, respectively, were detected in estrus and more than 93% of these subsequently ovulated. In contrast, of the residual cows not detected in estrus, 62 to 77% ovulated in the absence of detected estrus. Only ECP was successful in inducing more expression and intensity of estrus, and proportions of cows detected in estrus exceeded 80%. Given the large proportion of cows equipped with AMS collars ovulating in the absence of estrus, further research is warranted to determine if more pregnancies can be achieved by inseminating those cows not detected in estrus at an appropriate time when PGF is administered to induce luteolysis.  相似文献   

13.
The objective of this study was to compare a GnRH-based to an estrogen/progesterone (E2/P4)-based protocol for estrous cycle synchronization and fixed timed artificial insemination (TAI), both designed for synchronization of ovulation and to reduce the period from follicular emergence until ovulation in cows with a synchronized follicular wave. A total of 1,190 lactating Holstein cows (primiparous: n = 685 and multiparous: n = 505) yielding 26.5 ± 0.30 kg of milk/d at 177 ± 5.02 d in milk were randomly assigned to receive one of the following programs: 5-d Cosynch protocol [d −8: controlled internal drug release (CIDR) + GnRH; d −3: CIDR removal + PGF; d −2: PGF; d 0: TAI + GnRH] or E2/P4 protocol (d −10: CIDR + estradiol benzoate; d −3: PGF; d −2: CIDR removal + estradiol cypionate; d 0: TAI). Rectal temperature and circulating progesterone (P4) were measured on d −3, −2, 0 (TAI), and 7. The estrous cycle was considered to be synchronized when P4 was ≥1.0 ng/mL on d 7 in cows that had luteolysis (P4 ≤0.4 ng/mL on d 0). To evaluate the effects of heat stress, cows were classified by number of heat stress events: 0, 1, and 2-or-more measurements of elevated body temperature (≥39.1°C). Pregnancy success (pregnancy per artificial insemination, P/AI) was determined at d 32 and 60 after TAI. The cows in the 5-d Cosynch protocol had increased circulating P4 at the time of PGF injection (2.66 ± 0.13 vs. 1.66 ± 0.13 ng/mL). The cows in the E2/P4 protocol were more likely to be detected in estrus (62.8 vs. 43.4%) compared with the cows in the 5-d Cosynch protocol, and expression of estrus improved P/AI in both treatments. The cows in the 5-d Cosynch protocol had greater percentage of synchronized estrous cycle (78.2%), compared with cows in the E2/P4 protocol (70.7%). On d 60, the E2/P4 protocol tended to improve P/AI (20.7 vs. 16.7%) and reduced pregnancy loss from 32 to 60 d (11.0 vs. 19.6%), compared with the 5-d Cosynch protocol. In cows withtheir estrous cycle synchronized, the E2/P4 protocol had greater P/AI (25.6 vs. 17.7%) on d 60 and lower pregnancy loss from 32 to 60 d (6.7 vs. 21.7%) compared with cows in the 5-d Cosynch protocol. Follicle diameter affected pregnancy loss from 32 to 60 d only in the cows in the 5-d Cosynch protocol, with smaller follicles resulting in greater pregnancy loss. Pregnancy per AI at d 60 was different between protocols in the cows with 2 or more measurements of heat stress (5-d Cosynch = 12.2% vs. E2/P4 = 22.8%), but not in the cows without or with 1 heat stress measurement. In conclusion, the 5-d Cosynch protocol apparently produced better estrous cycle synchronization than the E2/P4 protocol but did not improve P/AI. The potential explanation for these results is that increased E2 concentrations during the periovulatory period can improve pregnancy success and pregnancy maintenance, and this effect appears to be greatest in heat-stressed cows when circulating E2 may be reduced.  相似文献   

14.
Five Holstein lactating dairy cows fed 5 total mixed rations (TMR) with different forage combinations were used in a 5 × 5 Latin square design to investigate diurnal variations of progesterone (P4), testosterone, and androsta-1,4-diene-3,17-dione (ADD) concentrations in the rumen. Meanwhile, different P4 inclusion levels [0 (control), 2, 20, 40, 80, and 100 ng/mL in culture fluids] were incubated in vitro for 6, 12, 24, 36, 48, and 72 h together with rumen mixed microorganisms grown on a maize-rich feed mixture (maize meal:Chinese ryegrass hay = :1) with an aim to determine microbial P4 transformation into testosterone and ADD. Ruminal P4, testosterone, and ADD concentrations of lactating dairy cows were greater in the TMR with forage combination of corn silage plus alfalfa hay or Chinese wild ryegrass hay than the TMR with the corn stover-based forage combination. The diurnal fluctuation pattern showed that P4, testosterone, and ADD concentrations in the rumen were greater at nighttime than daytime and peaked 6 h after feeding in the morning or afternoon. The in vitro batch cultures showed that the P4 elimination rate was highest at the P4 addition of 20 ng/mL and declined with the further increased addition of P4. The treatments after dosing P4 exhibited a shorter time than the control group until half of the initial P4 inclusion was eliminated (i.e., half time), and the lowest half time (1.46 h) occurred at the P4 addition of 20 ng/mL. In summary, the ruminal steroids concentration was affected by forage type and quality, and the rumen microorganisms exhibited great ability to transform P4 into testosterone and ADD, depending on incubation time and initial P4 addition level, suggesting that the host might affect the metabolism of its rumen microorganisms via the endogenous steroids.  相似文献   

15.
The aim of this study was to determine whether an increase in circulating estrogen concentrations would increase percentage pregnant per artificial insemination (PP/AI) in a timed AI protocol in high-producing lactating dairy cows. We analyzed only cows having a synchronized ovulation to the last GnRH of the Ovsynch protocol (867/1,084). The control group (n = 420) received Ovsynch (GnRH - 7 d - PGF - 56 h - GnRH - 16 h - timed AI). The treatment group (n = 447) had the same timed AI protocol with the addition of 1 mg of estradiol-17β (E2) at 8 h before the second GnRH injection. Ovarian ultrasound and blood samples were taken just before E2 treatment of both groups. In a subset of cows (n = 563), pressure-activated estrus detection devices were used to assess expression of estrus at 48 to 72 h after PGF2α treatment. Ovulation was confirmed by ultrasound 7 d after timed AI. Treatment with E2 increased expression of estrus but overall PP/AI did not differ between E2 and control cows. There was an interaction between treatment and expression of estrus such that PP/AI was greater in E2-treated cows that showed estrus than in E2-treated or control cows that did not show estrus and tended to be greater than control cows that showed estrus. There was evidence for a treatment by ovulatory follicle size interaction on PP/AI. Supplementation with E2 improved PP/AI in cows ovulating medium (15 to 19 mm) but not smaller or larger follicles. The E2 treatment also tended to improve PP/AI in primiparous cows with low (≤2.5) body condition score, and in cows at first postpartum service compared with Ovsynch alone. In conclusion, any improvements in PP/AI because of E2 treatment during a timed AI protocol appear to depend on expression of estrus, parity, body condition score, and size of ovulatory follicle.  相似文献   

16.
Female fertility has a major role in dairy production and affects the profitability of dairy cattle. The genetic progress obtained by traditional selection can be slow because of the low heritability of classical fertility traits. Endocrine fertility traits based on progesterone concentration in milk have higher heritability and more directly reflect the cow's own reproductive physiology. The aim of our study was to identify genomic regions for 7 endocrine fertility traits in dairy cows by performing a genome-wide association study with 54,000 SNP. The next step was to fine-map targeted genomic regions with significant SNP using imputed sequences to identify potential candidate genes associated with the normal and atypical progesterone profiles. The association between a SNP and a phenotype was assessed by a single SNP analysis, using a linear mixed model that included a random polygenic effect. Phenotypes and genotypes were available for 1,126 primiparous and multiparous Holstein-Friesian cows from research herds in Ireland, the Netherlands, Sweden, and the United Kingdom. In total, 44 significant SNP associated with 7 endocrine fertility traits were identified on Bos taurus autosome (BTA) 1–4, 6, 8–9, 11–12, 14–17, 19, 21–24, and 29. Three chromosomes, BTA8, BTA17, and BTA23, were imputed from 54,000 SNP genotypes to the whole-genome sequence level with Beagle version 4.1. The fine-mapping identified several significant associations with delayed cyclicity, cessation of cyclicity, commencement of luteal activity, and inter-ovulatory interval. These associations may contribute to an index of markers for genetic improvement of fertility. Several potential candidate genes reported to affect reproduction were also identified in the targeted genomic regions. However, due to high linkage disequilibrium, it was not possible to identify putative causal genes or polymorphisms for any of the regions.  相似文献   

17.
The objectives of the present case-control study were to assess (1) daily activity patterns (lying time, number of steps, number of lying bouts, and lying bout duration), and (2) circulating concentrations of biomarkers of pain (substance P), inflammation (haptoglobin), and stress (cortisol) in lactating dairy cows diagnosed with clinical metritis. Lactating dairy cows (n = 200) from 2 commercial dairy herds were enrolled in the present study. Cows diagnosed with clinical metritis (n = 100) at 7 ± 3 d in milk were matched according to lactation and days in milk to cows without clinical metritis (NO-CM; n = 100). On study d 1, clinical metritis was diagnosed (using a Metricheck device, Simcro Tech Ltd., Hamilton, New Zealand) by the presence of watery, reddish, or brownish foul-smelling vaginal discharge, and blood samples were collected for assessment of circulating concentration of substance P, haptoglobin, cortisol, total calcium, β-hydroxybutyrate, and blood cells. In addition, on study d 1 body condition of cows was visually assessed, and activity monitors were placed on the hind leg of a subset of cows (CM, n = 56; CON, n = 56) and were kept until study d 7. Cows showing any other signs of other diseases were not included in the study. Cows with clinical metritis tended to spend more time lying (CM = 628.92 min/d; NO-CM = 591.23 min/d) compared with NO-CM cows. Activity analysis by parity revealed that primiparous cows with clinical metritis spent more time lying compared with primiparous cows without clinical metritis. However, no differences in daily lying time were observed between multiparous cows with and without clinical metritis. Furthermore, cows in the CM group had a higher circulating concentration of substance P (CM = 47.15 pg/mL; NO-CM = 37.73 pg/mL) and haptoglobin (CM = 233.00 µg/mL; NO-CM = 99.98 µg/mL) when compared with NO-CM cows. Cows with clinical metritis had lower body condition score, and a greater proportion of cows in this group had hypocalcemia when compared with cows without clinical metritis. The circulating concentration of leukocytes and erythrocytes were decreased in cows with clinical metritis compared with cows without clinical metritis. Results from this study showed that concentrations of markers of inflammation, stress, pain, and activity were affected in cows diagnosed with clinical metritis; thus, strategies aimed to minimize the negative effects associated with clinical metritis may be required to improve the welfare of dairy cows.  相似文献   

18.
An experiment was conducted to evaluate the effects of increasing dietary inclusion rates of wet corn gluten feed (WCGF; Sweet Bran; Cargill Inc., Blair, NE) on milk production and rumen parameters. Four primiparous and 4 multiparous ruminally cannulated Holstein cows averaging 90 ± 13 d in milk (mean ± SD) were randomly assigned to 1 of 4 sequences in a replicated 4 × 4 Latin square experiment with 28-d periods. Treatments were diets containing 0, 11, 23, and 34% WCGF on a dry matter basis; alfalfa hay, corn silage, corn grain, soybean meal, expeller soybean meal, and mineral supplements were varied to maintain similar nutrient concentrations across diets. Performance and measures of ruminal fermentation were monitored. Linear and quadratic effects of increasing WCGF inclusion rate were assessed using mixed-model analysis. Increasing dietary WCGF linearly increased dry matter intake (26.7, 25.9, 29.3, and 29.7 kg/d for 0, 11, 23, and 34% WCGF, respectively) and milk production (36.8, 37.0, 40.1, and 38.9 kg/d). Concentrations of milk components did not differ among treatments; however, protein and lactose yields increased linearly and fat yield tended to increase linearly when more WCGF was fed. This led to greater production of energy-corrected milk (38.2, 38.8, 41.7, and 40.4 kg/d) and solids-corrected milk (35.2, 35.7, 38.5, and 37.2 kg/d), but efficiency of production linearly decreased. Increased WCGF in the diet tended to linearly decrease ruminal pH (6.18, 6.12, 6.14, and 5.91), possibly because mean particle size was below typical recommendations for all diets, and diets with greater proportions of WCGF had a smaller mean particle size. Ruminal acetate concentration decreased linearly and propionate increased linearly as WCGF inclusion rate increased. Treatments had a quadratic effect on ammonia concentration, with greater concentrations for the 0 and 34% WCGF diets. In situ digestibility of soybean hulls showed a significant diet-by-time interaction, and increasing dietary levels of WCGF linearly decreased in situ neutral detergent fiber disappearance at 24 h. Change in body condition score increased linearly with increasing WCGF inclusion rate. Results indicate that adding WCGF to dairy rations can increase energy-corrected milk yield, and this increase appears to be driven, at least in part, by an increase in dry matter intake.  相似文献   

19.
Progesterone pharmacokinetics were analyzed for plasma hormone concentrations ranging from linear to saturated metabolism in lactating Holstein cows with differing daily milk yields. The adequacy of 2-coupled first-order (bi-exponential equation), hyperbolic (Michaelis-Menten equation), and sigmoidal (Hill equation) kinetic models to describe the experimental progesterone pharmacokinetic profiles was examined on a statistical basis. After nonlinear regression and statistical analysis of the data-fitting capability, a simple one-compartment model based on Hill equation proved to be most adequate. This model indicates an enzyme-catalyzed metabolism of progesterone involving cooperative substrate-binding sites, resulting from allosteric effects that yield a sigmoidal saturation rate curve. Kinetic parameters were estimated for 2 groups of lactating Holstein cows with different daily milk yields. We found, for the first time, a remarkable quantitative agreement of the Hill coefficient value with that reported in pharmacokinetic studies involving cytochrome P450, family 3, subfamily A (CYP3A)-mediated reactions in other mammals, humans included. It seems that positive cooperativity makes enzymes much more sensitive to plasma progesterone concentration, and their activities can undergo significant changes in a narrow range of concentration as characteristic of sigmoidal behavior. Therefore, the values of classical pharmacokinetic parameters, such as the elimination constant, half-life, and clearance rate, were found to be highly dependent on the plasma progesterone concentration.  相似文献   

20.
Stressful situations trigger several changes such as the secretion of cortisol and dehydroepiandrosterone (DHEA) from the adrenal cortex, in response to ACTH. The aim of this study was to verify whether overstocking during the dry period (from 21 ± 3 d to the expected calving until calving) affects DHEA and cortisol secretion and behavior in Holstein Friesian cows. Twenty-eight cows were randomly divided into 2 groups (14 animals each), balanced for the number of lactations, body condition score, and expected date of calving. Cows in the far-off phase of the dry period (from 60 to 21 d before the expected calving date) were housed together in a bedded pack. Then, animals from 21 ± 3 d before the expected calving until calving were housed in pens with the same size but under different crowding conditions due to the introduction of heifers (interference animals) into the pen. The control condition (CTR) had 2 animals per pen with 12.0 m2 each, whereas the overstocked condition (OS) had 3 interference animals in the same pen with 4.8 m2 for each animal. On d ?30 ± 3, ?21 ± 3, ?15 ± 3, ?10 ± 3, and ?5 ± 3 before and 10, 20, and 30 after calving, blood samples were collected from each cow for the determination of plasma DHEA and cortisol concentrations by RIA. Rumination time (min/d), activity (steps/h), lying time (min/d), and lying bouts (bouts/d) were individually recorded daily. In both groups, DHEA increased before calving and the concentration declined rapidly after parturition. Overstocking significantly increased DHEA concentration compared with the CTR group at d ?10 (1.79 ± 0.09 vs. 1.24 ± 0.14 pmol/mL), whereas an increase of cortisol was observed at d ?15 (3.64 ± 0.52 vs. 1.64 ± 0.46 ng/mL). The OS group showed significantly higher activity (steps/h) compared with the CTR group. Daily lying bouts tended to be higher for the OS group compared with CTR group in the first week of treatment. The overall results of this study documented that overstocking during the dry period was associated with a short-term changes in DHEA and cortisol but these hormonal modifications did not influence cow behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号