首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure, dielectric permittivity, strain, electric (E) polarization, and piezoelectric responses of (Bi1/2Na1/2)0.925Ba0.075(Ti1−xZrx)O3 (BNT7.5BT-100xZr; x = 0–0.04) ceramics were investigated as functions of poling E field and temperature. The BNT7.5BT ceramic reveals a phase transition from P4bm nanodomains to long-range-ordered P4mm domains. The Zr-doped BNT7.5BT ceramic reveals a reversible change of unit cell with dynamically fluctuating polar nanoregions, which are responsible for the large strain. The poled BNT7.5BT ceramic displays a depolarization temperature of Td = 90 °C, which correspond to a phase transition from ferroelectric to relaxor states. The Zr-doped BNT7.5BT ceramics have Burns temperatures (TB) in the region of 400–435 °C, below which polar nanoregions begin to develop. The Zr-doped BNT7.5BT ceramics display wide diffuse phase transitions, suggesting a transition from R + T to T phases. BNT7.5BT-2Zr ceramic shows a temperature dependent linear large strain of 0.482% at 150 °C and can be a potential candidate for lead-free actuator.  相似文献   

2.
(1?x)Bi0.51(Na0.82K0.18)0.50TiO3xBa0.85Ca0.15Ti0.90Zr0.10O3 [(1?x)BNKT–xBCTZ] ceramics were prepared by the conventional solid-state method, and the effect of BCTZ content on their microstructure and electrical properties was investigated. A stable solid solution with a pure perovskite phase is formed between BNKT and BCTZ, and these ceramics have a coexistence of rhombohedral and tetragonal phases in the range of 0  x < 0.15. Their Tm and Td values are strongly independent on the BCTZ content. Moreover, the sintering temperature strongly affects the ferroelectric and piezoelectric properties of these ceramics with x = 0.02. These ceramics with x = 0.02 exhibit an optimum electrical behavior of d33  205, kp  0.25, Pr  31.8 μC/cm2, and Ec  19.1 kV/cm together with a high Td value of ~91 °C when sintered at 1180 °C and poled at an optimum condition. As a result, the (1?x)BNKT–xBCTZ ceramic is a promising candidate material for lead-free piezoelectric ceramics.  相似文献   

3.
《Ceramics International》2007,33(6):1041-1046
Lead-free (1  x)BaTiO3xBi0.5Na0.5TiO3 (x = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3) ferroelectric ceramics were fabricated by the conventional ceramic technique. Sintering was made at 1200 °C for 2–4 h in air atmosphere. The crystal structure was investigated by X-ray diffraction. The dielectric and ferroelectric properties were also studied. Room temperature permittivity was found to decrease as Bi0.5Na0.5TiO3 (BNT) content increases. Only the sample with 0.3 mol BNT was found to have relaxor behaviour. The Tc shifted slightly only for BNT addition lower than 0.1 mol. The highest Tc (about 150 °C) was obtained for 0.2 mol BNT addition. The remanent polarization, Pr, decreases whereas the coercive field, Ec, increases monotonously as the BNT content increases.  相似文献   

4.
Electrical properties of lead-free solid solution ceramics from the Bi0.4871Na0.4871La0.0172TiO3 (BNLT) and BaZr0.05Ti0.95O3 (BZT) system have been improved by a thermal treatment technique. A modified two step mixed-oxide method was employed for the preparation of the (1?x)BNLT–xBZT ceramics, where x=0.06, 0.09, 0.12 and 0.20. After sintering at 1125 °C for 4 h, the BNLT–BZT ceramics were annealed at 825, 925 and 1025 °C. The annealing treatment caused an increase in dielectric constant of BNLT–BZT ceramics with x≤0.09 mol% and with x higher than 0.09 mol% the dielectric value dropped considerably. The ferroelectric properties of all annealed ceramic samples tend to decrease with increasing annealing temperature as confirmed by the slimmer P–E loops. The piezoelectric coefficient (d33) increased with annealing temperatures and a maximum value of ~170 pC/N was obtained from the ceramic samples annealed at 1025 °C with x=0.02.  相似文献   

5.
(Li0.12Na0.88)(Nb0.96?xSb0.04Tax)O3 (LNNST) ceramics were fabricated by the normal sintering. These LNNST ceramics endure a phase transition from an orthorhombic phase, a coexistence of orthorhombic and tetragonal phases, to a tetragonal phase with increasing Ta content. Dense microstructure has been developed for all ceramics. The Tc decreases and the ?r increases with increasing Ta content, together with a very low dielectric loss of less than 1.3%. A high Qm value of ~1230 is demonstrated for the ceramic with x = 0.06. Enhanced piezoelectric properties are also demonstrated for the ceramic with x = 0.03 because of a coexistence of two phases. Therefore, this ceramic is a promising candidate for the transducer and transformer applications.  相似文献   

6.
In the present work, lead-free (Ba1?xCax)(Zr0.04Ti0.96)O3 (x=0.00–0.09) ceramics were fabricated via a solid-state reaction method. The microstructure and electrical properties of the ceramics were investigated. The microstructure of the BCZT ceramics showed a core shell structure at compositions of x=0.03 and 0.06. The substitution of small amount of Ba2+ by Ca2+ resulted in an improvement of the piezoelectric, dielectric and ferroelectric properties of the ceramics. The orthorhombic–tetragonal phase transition was found in the composition of x≤0.03. Piezoelectric coefficient of d33~392 pC/N and lowest Ec~3.3 kV/cm with highest Pr~14.1 μC/cm2 were obtained for the composition of x=0.03 while its Curie temperature (TC) was as high as 125 °C. However, the ferroelectric to paraelectric transition temperature had slightly shifted towards room temperature with increasing Ca2+ concentration.  相似文献   

7.
Lead-free x Bi0.5Na0.5TiO3y BaTiO3z Bi0.5K0.5TiO3 piezoelectric ceramics were synthesized by a conventional solid state reaction method. The microstructure, ferroelectric and piezoelectric properties of the ceramics were investigated. Structure measurements by X-ray diffraction with Rietveld refinement have allowed us to specify more precisely the morphotropic phase boundary (MPB) in this system. For (1 ? x) BNT–x BT solid solution ceramics, the 0.94 BNT–0.06 BT morphotropic composition shows the higher values with d33 = 170 pC/N, kp = 0.35 and kt = 0.53. In the case of (1 ? x) BNT–x BKT compositions, the d33, kp and kt are, respectively, 137 pC/N, 0.39 and 0.54 for the 0.80 BNT–0.20 BKT ceramic. On the other hand, the ternary 0.865 BNT–0.035 BT–0.100 BKT morphotropic composition shows high piezoelectric constant and electromechanical coupling factors (d33 = 133 pC/N, kp = 0.26 and kt = 0.57).  相似文献   

8.
Lead free Ba1?x(Bi0.5Na0.5)xTiO3 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ferroelectric ceramics were synthesized by conventional solid state reaction technique. Sintering was done at 1200 °C for 2 h in air atmosphere. The final products have tetragonal symmetry with decreasing c/a ratio confirmed by X-ray diffraction analysis. The grain size varies between 300 nm to 1000 nm for x=0 to 0.1. With increase in Bi0.5Na0.5TiO3 [BNT] content, the room temperature permittivity decreases whereas the Curie temperature (Tc) increases and its highest value was found to be 155 °C for 10 mol% of BNT addition. The ceramics show stable and low dielectric loss characteristics. The remnant polarization (Pr) and the coercive field (Ec) increases monotonously with increase in BNT content. The highest value of 2Pr (=17 μC/cm2) and 2Ec (=22 Kv/cm) was obtained for x=10 mol% BNT addition.  相似文献   

9.
A low sintering temperature is demonstrated for (Ba0.85Ca0.15)1?xLix(Ti0.90Zr0.10)1?xNbxO3 (BCLTZN-x) piezoelectric ceramics, where BCLTZN-x lead-free piezoelectric ceramics were prepared by the normal sintering. Effects of Li and Nb on the microstructure and electrical properties of these ceramics were investigated. The sintering temperature of BCLTZN-x ceramics was decreased greatly by introducing Li and Nb, and the grain size of these ceramics decreases with increasing x. These ceramics with a small amount of Li and Nb maintain good piezoelectric properties, together with a low sintering temperature and a lower dielectric loss. These ceramics with x = 0.01 demonstrate optimum electrical properties: d33  353 pC/N, kp  41.1%, Tc  86 °C, ?r  4236, and tan δ  0.75%.  相似文献   

10.
(Na1/2Bi1/2)TiO3 doped in situ with 11 mol% BaTiO3 (NBT–BT0.11) powders were synthesized by a sol–gel method, and the electrical properties of the resulting ceramics were investigated. The powders consisting of uniform and fine preliminary particles of about 50 nm were prepared by calcining the gel precursor at 700 °C. (Na1/2Bi1/2)0.89Ba0.11TiO3 ceramics, sintered at temperatures up to 1150 °C have a rhombohedral symmetry, while the ceramic sintered at 1200 °C exhibits a tetragonal crystalline structure. The ceramics show high dielectric constant (?r  5456), dielectric loss of 0.02, depolarization temperature Td  110 °C and temperature corresponding to the maximum value of dielectric constant Tm  262 °C. The dielectric constant (?33) and the piezoelectric constant (d33) attain the maximum values of 924 and 13 pC/N, respectively, while the electromechanical coupling factor (kp) value is 0.035. The NBT–BT0.11 ceramics derived from sol–gel present high mechanical quality factor (Qm  860). The dielectric and piezoelectric properties values of NBT–BT0.11 ceramics derived from sol–gel are smaller than those of samples produced by the conventional solid state reaction method, due to the grains size and oxygen vacancies that generate dipolar defects.  相似文献   

11.
Lead-free piezoelectric (1 ? x)Bi0.5(Na0.78K0.22)0.5TiO3xK0.5Na0.5NbO3 (BNKT–xKNN, x = 0–0.10) ceramics were synthesized using a conventional, solid-state reaction method. The effect of KNN addition on BNKT ceramics was investigated through X-ray diffraction (XRD), dielectric, ferroelectric and electric field-induced strain characterizations. XRD revealed a pure perovskite phase with tetragonal symmetry in the studied composition range. As the KNN content increased, the depolarization temperature (Td) as well as maximum dielectric constant (?m) decreased. The addition of KNN destabilized the ferroelectric order of BNKT ceramics exhibiting a pinched-type hysteresis loop with low remnant polarization (11 μC/cm2) and small piezoelectric constant (27 pC/N) at 3 mol% KNN. As a result, at x = 0.03 a significant enhancement of 0.22% was observed in the electric field-induced strain, which corresponds to a normalized strain (Smax/Emax) of ~434 pm/V. This enhancement is attributed to the coexistence of ferroelectric and non-polar phases at room temperature.  相似文献   

12.
《Ceramics International》2016,42(12):13783-13789
Lead-free (1−x)(0.0852Bi0.5Na0.5TiO3–0.12Bi0.5K0.5TiO3–0.028BaTiO3)–xCaZrO3 piezoelectric ceramics (BNT−BKT−BT−xCZ, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by using a conventional solid-state reaction method. The effects of CZ-doping on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT−BKT−BT−xCZ system were systematically investigated. The polarization and strain behaviors indicated that the long-range ferroelectric order in the unmodified BNT−BKT−BT ceramics was disrupted by the increase of CZ-doping content, and correspondingly the depolarization temperature (Td) shifted down from 109 °C to below room temperature. When x>0.03, accompanied with the drastic decrease in the remnant polarization (Pr) and piezoelectric coefficient (d33), the electric-field-induced strain was enhanced significantly. A large unipolar strain of 0.35% under an applied electric field of 70 kV/cm (Smax/Emax=500 pm/V) was obtained in the BNT−BKT−BT−0.04CZ ceramics at room temperature, which was attributed to the reversible electric-field-induced phase transition between the relaxor and ferroelectric phases.  相似文献   

13.
The effects of composition, sintering temperature and dwell time on the microstructure and electrical properties of (0.75 ? x)BiFeO3–0.25BaTiO3xBi0.5K0.5TiO3 + 1 mol% MnO2 ceramics were studied. The ceramics sintered at 1000 °C for 2 h possess a pure perovskite structure and a morphotropic phase boundary of rhombohedral and pseudocubic phases is formed at x = 0.025. The addition of Bi0.5K0.5TiO3 retards the grain growth and induces two dielectric anomalies at high temperatures (T1  450–550 °C and T2  700 °C, respectively). After the addition of 2.5 mol% Bi0.5K0.5TiO3, the ferroelectric and piezoelectric properties of the ceramics are improved and very high Curie temperature of 708 °C is obtained. Sintering temperature has an important influence on the microstructure and electrical properties of the ceramics. Critical sintering temperature is 970 °C. For the ceramic with x = 0.025 sintered at/above 970 °C, large grains, good densification, high resistivity and enhanced electrical properties are obtained. The weak dependences of microstructure and electrical properties on dwell time are observed for the ceramic with x = 0.025.  相似文献   

14.
Bismuth sodium titanate [(Bi0.5Na0.5)TiO3 or BNT] ceramics incorporated with 0, 1, 5, 10, 15 and 20 mol% niobium were prepared by conventional solid state reaction method. The green bodies were sintered at 1050 °C for 2 h to obtain dense ceramics. The effects of substitution of niobium ion for titanium ion in BNT ceramics on micro-structure and dielectric properties were investigated. X-ray diffraction analysis showed the presence of a secondary phase when more than 5 mol% niobium was added. Within the solubility limit, Nb doping caused the grain size of BNTNb to be smaller than the undoped sample. The investigation of the dielectric properties showed that the transition temperature (Tc) was found to shift towards lower temperature as the content of Nb increased. In this research, the donor-type behavior and induced charged defects had significant influence on the electrical properties of Nb-doped BNT ceramics.  相似文献   

15.
In order to stabilize the perovskite structure and improve the storage energy density (U) of Pb(Tm1/2Nb1/2)O3 (PTmN) based materials, Pb(Mg1/3Nb2/3)O3 (PMN) was introduced into PTmN to form binary (1-x)PTmN-xPMN solid solution ceramics. The XRD patterns show that all the compositions belong to orthorhombic phase with space group Pbnm. The Curie temperature (TC) gradually decreases while the dielectric constant (ε') increases for (1-x)PTmN-xPMN with increasing PMN content. The ε' of each composition above TC obeys the Curie-Weiss law. The appearance double hysteresis loop confirms the antiferroelectric nature of (1-x)PTmN-xPMN (x = 0.02–0.18) ceramics. With the increase of PMN concentration, the maximum polarization slowly increases from 8.58 μC/cm2 to 29.5 μC/cm2 while the threshold electric field (EA-F) gradually declines from 290 kV/cm to 120 kV/cm. The maximum of U (3.12 J/cm3) is obtained in 0.92PTmN-0.08PMN ceramic with moderate EA-F = 220 kV/cm, which makes (1-x)PTmN-xPMN ceramics safe in practical application.  相似文献   

16.
The (0.94–x)Bi0.5Na0.5TiO3–0.06BaTiO3–x(Sr0.7Bi0.20.1)TiO3 (BNT–BT–xSBT, 0  x  0.24) solid solution ceramics were synthesized via a conventional solid–state reaction method and the correlation of phase structure, piezoelectric, ferroelectric properties and electrocaloric effect (ECE) was investigated in detail. The ECE in lead–free BNT–BT–xSBT ceramics was measured directly using a home–made adiabatic calorimeter with maximum adiabatic temperature change ΔT = 0.4 K with x = 0.08 under the electric field E = 6 kV/mm at room temperature. The position of maximum ECE was found in the vicinity of nonergodic and ergodic phase boundary, where the maximum change in entropy occurs as a result of the field–induced phase transformation between the ergodic and long–range ferroelectric phase. Besides, the mechanism for the shift of ECE peak is discussed in detail. Finally, the temperature dependence of ECE for BNT–BT–xSBT (x = 0, 0.04 and 0.08) was also investigated. This work may present a guideline for designing BNT–based ferroelectric relaxor ceramics for EC cooling technologies.  相似文献   

17.
In order to solve the low temperature stability of electrical properties in KNN-based ceramics, (1 ? x)[(K0.5Na0.5)0.95Li0.05](Nb0.95Sb0.05)O3xBaTiO3 [(1 ? x)KNLNS–xBT] lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. The introduction of BT stabilizes the tetragonal phase of KNLNS ceramics at room temperature, results in a typical ferroelectric relaxor behavior, and shifts the polymorphic phase transition to below room temperature. Moreover, there is a strong BaTiO3 concentration dependence of relaxor behavior and electrical properties, and the ceramic with x = 0.005 exhibits optimum electrical properties and typical relaxor behavior (d33 = 269 pC/N, kp = 0.50, ?r = 1371, tan δ = 0.03, TC  349 °C and γ = 1.88024). These results indicate that the BT is an effective way to improve the temperature stability as well as the electrical properties of KNN-based ceramics.  相似文献   

18.
Lead free ferroelectric ceramics near the morphotropic phase boundary (MPB) of KxNa1?x(NbO3)/KNN system (where x=0.48, 0.50, 0.52) were synthesized in the single perovskite phase by the partial co-precipitation synthesis route. The compositional dependences of phase, structure and electrical properties were studied in detail. X-ray diffraction (XRD) study revealed the coexistence of orthorhombic and monoclinic structures in K0.50N0.50NbO3. SEM characterization of the sintered KNN ceramics revealed dense and homogeneous packing of grains. Room temperature (RT) dielectric constant (εr) ~648, dielectric loss (tan δ) ~0.05 at 100 kHz, a relatively high density (ρ) ~4.49 g/cm3, remnant polarization (Pr) ~11.76 μC/cm2, coercive field (Ec) ~9.81 kV/cm, Curie temperature (Tc) ~372 °C and piezoelectric coefficient (d33) ~71 pC/N observed in K0.50N0.50NbO3 suggested that it can be an important lead free ferroelectric material.  相似文献   

19.
《Ceramics International》2016,42(3):4274-4284
Bi0.5(Na0.65K0.35)0.5TiO3 (BNKT) and Mn-modified Bi0.5(Na0.65K0.35)0.5(MnxTi1−x)O3 (BNKMT-103x), (x=0.0–0.5%) ferroelectric ceramics were synthesized by solid-state reaction method. Optimization of calcination temperature in Mn-doped ceramics was carried out for the removal of secondary phases observed in XRD analysis. BNKMT ceramics sintered at 1090 °C showed enhanced dielectric, piezoelectric and ferroelectric properties in comparison to pure BNKT. The average grain size was found to increase from 0.35 μm in BNKT to 0.52 μm in Bi0.5(Na0.65K0.35)0.5(Mn0.0025Ti0.9975)O3 (BNKMT-2.5) ceramics. The dielectric permittivity maximum temperature (Tm) was increased to a maximum of 345 °C with Mn-modification. AC conductivity analysis was performed as a function of temperature and frequency to investigate the conduction behavior and determine activation energies. Significant high value of piezoelectric charge coefficient (d33=176 pC/N) was achieved in BNKMT 2.5 ceramics. Improved temperature stability of ferroelectric behavior was observed in the temperature dependent P–E hysteresis loops as a result of Mn-incorporation. The fatigue free nature along with enhanced dielectric and ferroelectric properties make BNKMT-2.5 ceramic a promising candidate for replacing lead based ceramics in device applications.  相似文献   

20.
The morphological, compositional, structural, dielectric and electrical properties of Bi1.5Zn0.92Nb1.5?xSnxO6.92?x/2 ceramics have been investigated by means of scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), temperature and frequency dependent dielectric constant and temperature dependent conductivity measurements for Sn-contents in the range of 0.00  x  0.60. It was shown that single phase of the pyrochlore ceramics can only be obtained for x  0.25. Above this value a ZnO phase appeared in the XRD patterns and SEM micrographs as well. An increase in the lattice constant and in the temperature coefficient of dielectric constant and a decrease in the dielectric constant values with increasing Sn content was observed for the ceramics which exhibited a single phase formation. A temperature dependent but frequency invariant dielectric constant was observed for this type of ceramics. The lowest electrical conductivity and highest dielectric constant was observed for the sample which contains 0.06 Sn. The Bi1.5Zn0.92Nb1.5?xSnxO6.92?x/2 pyrochlore ceramic conductivities are thermally active above 395 K. For temperatures greater than 395 K, the conductivity activation energy which was found to be 0.415 eV for the pure sample increased to 1.371 eV when sample was doped with 0.06 Sn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号