首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The increasing use of gas turbines in combined cycle power plants together with the high amount of kinetic energy in modern gas turbine exhaust flows focuses attention on the design of gas turbine diffusers as the connecting part between the Brayton/Joule and the Rankine parts of the combined cycle. A scale model of a typical gas turbine exhaust diffuser is investigated experimentally. The test rig consists of a radial type, variable swirl generator which provides the exhaust flow corresponding to different gas turbine operating conditions. Static pressure measurements are carried out along the outer diffuser walls and along the hub of the annular part and along the centerline of the conical diffuser. Velocity distributions at several axial positions in the annular and conical diffuser have been measured using a Laser Doppler Velocimeter (LDV). Pressure recovery coefficients and velocity profiles are depicted as a function of diffuser length for several combinations of swirl strength, tip flow and strut geometries. The diffuser without struts achieved a higher pressure recovery than the diffuser with struts at all swirl angle settings. The diffuser with cylindrical struts achieved a higher pressure recovery than the diffuser with profiled struts at all swirl angle settings. Inlet flows with swirl angles over 18?affected the pressure recovery negatively for all strut configurations.  相似文献   

2.
为了研究入口气流旋流角对带支撑结构轴流排气扩压段气动性能的影响,以某型燃气轮机排气扩压段为研究对象,采用数值计算的方法,对单独排气段模型及排气段和涡轮末级动叶耦合模型分别进行数值模拟。采用总压保持系数和静压恢复系数作为衡量排气扩压段气动性能的主要参数。排气段单独模拟的结果显示,当旋流角从0°变化至-32°,总压保持系数下降4%,且在-20°以后开始呈现突然的快速下降趋势;而静压恢复系数先上升后降低,在-16°时达到最大值。另外,通过耦合模型与单独排气段模型的数值计算对比,发现当排气段入口旋流角和质量流量相同时,计算结果较为一致。以上结果说明,入口旋流角是影响排气扩压段流动性能的关键因素之一,进行排气段结构设计时要充分考虑旋流角对内部流动的影响。而且,单独排气段数值模拟在相同质量流量和旋流角度条件下,可近似达到耦合模拟的精度,提高设计效率。  相似文献   

3.
Highly efficient turbine exhaust diffuser cannot be designed without taking into account the unsteady interactions with the last rotating row of the turbine. Former investigations described in the literature show a very high potential compared to that of other parts of turbomachines for improving the diffuser. A scale model of a typical gas turbine exhaust diffuser is investigated experimentally. To investigate the influence of rotating wakes, measurements without a spoke wheel as well as measurements with a variable-speed rotating cylindrical spoke wheel with 2 mm- or 10 mm-spokes simulating turbine rotor wakes were made. Miniaturized 3-hole pneumatic probes as well as a 2D-Laser-Doppler-Velocimeter (LDV) were used to investigate velocity profiles. 122 static pressure tapings were used to measure several axial and circumferential static pressure distributions. Without a spoke-wheel the annular diffuser separates at the shroud for all swirl configurations. For the measurements with the 2 mm spoke wheel, the separating diffuser was unstable while keeping the test rig operating parameters constant. For a non-rotating 10 mm spoke wheel and at rotational speeds less than 1,000 rpm, the annular diffuser separated at the shroud. Increasing the rotational speed of the 10mm spoke wheel, flow did not separate at the shroud and much higher pressure recovery than without spoke wheel has achieved.  相似文献   

4.
Introduction The research of flow structure in the entrance part of the mixing chamber of two-dimensional supersonic ejector[1,2] shows, how this structure depends both on stagnation pressure ratio of streams p01/p02[3] and on back pressure ratio pb/p02 [4]. It was found out that the structure of shock waves is not stable, but it oscillates less or more. For the high back pressure ratio a terminal shock wave is in the mixing chamber and due to this shock wave the mixing processes change quali…  相似文献   

5.
为探究轴流涡轮耦合排气壳扩压段的一维设计变量选取规律,提高排气壳扩压段的性能,参考现有NRCC叶栅导叶模型,采用自编程序,结合理论分析构建轴流涡轮与排气扩压段耦合的一维设计模型。详细分析耦合设计中影响扩压段的静压恢复系数以及总体性能的因素。研究结果表明:扩压段面积比、平均倾角、扩张角以及壁面摩擦系数等设计参数不仅影响扩压段的静压恢复系数,也影响涡轮的气动效率;本研究模型在面积比为3.5、平均倾角为30°、扩张角δ为5°时整体性能最优;涡轮出口气流的马赫数、叶顶泄漏流以及出口旋流对扩压段的性能有很大影响,出口半径比的增大会使得静压恢复系数降低,因此在耦合设计时应充分考虑涡轮以上参数的选择。  相似文献   

6.
Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solidparticles accelerated through a high-speed gas flow in a converging-diverging nozzle.In this study,pseudo-shockwaves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique.Theschlieren photographs reveals the supersonic flow with shock train in the nozzle,Static pressure along the barrelwall is also measured.The location of the head of pseudo-shock wave and its pressure distribution along the noz-zle wall are analytically explained by using a formula of pseudo-shock wave.The analytical results show that thesupersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of nor-mal shock wave.  相似文献   

7.
基于超音速分离管中混合气体流动属于伴随凝结相变的可压缩、跨音速的特点,建立了考虑传质效应与非平衡凝结过程的数学模型,并采用数值方法对伴随水蒸气凝结的超音速分离管中的流动进行分析研究。以空气、水蒸气及液态水为流动介质,采用两相流动中的VOF模型结合凝结相变模型以及组分传输模型,研究不同进出口参数及不同水蒸气含量对凝结流场的影响。研究结果表明,所建立的分离管内部非平衡凝结相变模型可以较好的再现超音速流中的凝结成核及液滴生长过程;数值计算结果表明,入口压力、温度及水蒸气含量对分离管内流动凝结过程有直接且重要的影响。因此在进行超音速分离管设计时,考虑温度压力参数的同时,考虑水蒸气含量对分离管性能的影响也是非常重要的。  相似文献   

8.
This paper deals with experimental study of flow field of starting process in two-dimensional, single-stage supersonic ejector on different air total pressure. Schlieren pictures of flow field were taken, static pressure distribu-tions on side wall were measured. The obtained results show that, on critical pressure, the starting main shock waves in ejector oscillated back and forth between the second throat and the middle section of the mixing chamber, it causes the pressure in the second half of the mixing chamber acutely fluctuated .When the working pressure of the active flow is higher than the critical starting pressure, ejector starts normally and the inner flow-field of the mixing chamber keeps stable and the shock waves in the second throat have a certain degree of oscillation . After ejector starts, the operating pressure of the active flow may be lower than the starting pressure .  相似文献   

9.
When non-equilibrium condensation occurs in a supersonic flow field, the flow is affected by the latent heat released. In the present study, in order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock / boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically and experimentally. The result obtained showed that the total pressure loss in the flow fields might be effectively reduced by the suitable combination between non-equilibrium condensation and the position of porous wall.  相似文献   

10.
In this paper, the outline of the Mach 4 supersonic wind tunnel for the investigation of the supersonic internal flows in ducts was firstly described. Secondly, the location, structure and characteristics of the Mach 2 and Mach 4 pseudo-shock waves in a square duct were investigated by color schlieren photographs and duct wall pressure fluctuation measurements. Finally, the wall shear stress distributions on the side, top and bottom walls of the square duct with the Mach 4 pseudo-shock wave were investigated qualitatively by the shear stress-sensitive liquid crystal visualization method. The side wall boundary layer separation region under the first shock is narrow near the top wall, while the side wall boundary layer separation region under the first shock is very wide near the bottom wall.  相似文献   

11.
两相流超音速流动_激波及其应用研究   总被引:5,自引:1,他引:4       下载免费PDF全文
从两相流体的音速特点出发 ,研究两相超音速流动 ,分析超音速流动导致的激波状况 ,并利用两相激波加速凝结和增压的特点 ,设计了增压换热器。两相流的音速受其压缩性的影响而呈现出与单相流不同的特点 ,其较小的音速值使得两相超音速流动更易实现。两相流激波与波前马赫数密切相关 ,波后汽相凝结、压力升高 ,利用该特点设计的汽水直接接触式换热器 ,具有高效换热和增压的特点  相似文献   

12.
The steady two-dimensional Navier–Stokes equations with the slip wall boundary conditions were used to simulate the supersonic flow in micro convergent–divergent nozzles. It is observed that shock waves can take place inside or outside of the micronozzles under the earth environment. For the over-expanded flows, there is a boundary layer separation point, downstream of which a wave interface separates the viscous boundary layer with back air flow and the inviscid core flow. The oblique shock wave is followed by the bow shock and shock diamond. The viscous boundary layer thickness relative to the whole nozzle width on the exit plane is increased but attains the maximum value around of 0.5 and oscillates against this value with the continuous increasing of the nozzle upstream pressures. The viscous effect either changes the normal shock waves outside of the nozzle for the inviscid flow to the oblique shock waves inside the nozzle, or transfers the expansion jet flow without shock waves for the inviscid flow to the oblique shock waves outside of the nozzle.  相似文献   

13.
The shorter residence period of supersonic air in a scramjet combustor makes mixing and combustion challenging. Mixing augmentation occurs at the fuel-supersonic air interface. Multiple interactions between shock waves and the shear layer may significantly affect this inter surface. In this research, an attempt has been made to analyze how multiple oblique shock waves interact with the shear layer. The primary splitter plate combustor bottom wall is modified with a wavy-wall surface to ensure the development of multiple oblique shock waves. The internal flow field with and without a wavy wall surface has been analyzed by solving the two-dimensional Reynolds averaged Navier-Stokes equations and SST k-ω turbulence model. The reaction between ethylene fuel and the air is modeled with a global one-step reaction mechanism with finite rate eddy dissipation turbulence chemistry interaction. The flow disturbances with the wavy-wall surface have been evaluated by analyzing the numerical results like the flow structure, pressure, velocity, reaction rate, vortices, turbulence intensity, and interactions among shock wave, shear mixing, and boundary layers. The oblique shock waves induced from the wavy-wall surface significantly impact the mixing of fuel and air and successful reaction mechanism from the visualization of flow structure and concern results.  相似文献   

14.
Supersonic ejectors involve very complex phenomena such as interaction between supersonic and subsonic flows, shock trains, instabilities, which strongly influences the performance of supersonic ejector. In this study, the static pressure distribution along the ejector wall and Mach number distribution along the axis are used to investigate the internal flow field of supersonic ejector. Results indicate that when the back pressure is much less than the critical back pressure, there are two series of shock trains, and the change of the back pressure will not affect the flow field before the effective area section, so the entrainment ratio would remain constant. The second shock train moves further upstream and is combined with the first shock train to form a single shock train as the back pressure rises. When the back pressure is greater than the critical back pressure, the position of the shock train, the static pressure at its upstream and the entrainment ratio, will be affected. The “effective area section” in the mixing tube is obtained. The effective area section position moves downstream with the increase of the primary flow pressure, while it moves upstream with the increase of the secondary flow pressure. The entrainment ratio shows inversely proportional relationship with the effective section position. Besides, the first shock train length increases with the increase of primary flow pressure or secondary flow pressure. The critical back pressure represents direct proportional relationship to the first shock train length.  相似文献   

15.
It is well known that increasing the rotational velocity is an effective way to increase the total pressure ratio. With increasing flow velocity especially under the condition of transonic flow in the supersonic region, where exist strong shock waves, the shock wave loss becomes main and important. Simultaneously, there occurs boundary layer separation due to the shock wave / boundary layer interaction. In the present paper the transonic compressor blades were studied and analyzed to find a proper and simple way to reduce the shock wave loss by optimizing the suction surface configuration or controlling the gradient of isentropic Mach number on the suction surface. A Navier-Stokes solver combined with a modified design algorithm was developed and used. The NASA single rotor for transonic flow compressor was served as a numerical example to show the effectiveness of this method. Two cases for both original and modified rotors were analyzed and compared.  相似文献   

16.
A slotted wall with a cavity which reduces the effect of the shock wave on the film cooling was developed through understanding of the mechanism by which the shock wave affects the supersonic film cooling. Numerical results show that the supersonic film cooling effectiveness with the slotted wall is improved after the shock wave incidence, even better than that without the shock wave effect. The cooling stream flows into the cavity upstream of the slotted wall and flows out downstream, which bypasses more cooling gas to protect the surface downstream after the shock wave incidence, which weakens the effect of the shock wave on the film cooling. Upstream of the shock wave incidence, the slotted wall reduces the mixing between the mainstream and the cooling stream and the coolant boundary layer thickness, which reduces the film cooling effectiveness for both structures than without the slotted wall, with an effectiveness which nearly the same as or even a little better than without the slotted wall for another structure.  相似文献   

17.
The paper deals with experimental and numerical results of investigation into supersonic and transonic flow past a two-dimensional model ejector. Results of optical measurements show a flow structure and flow parameter development in the entrance part of the mixing chamber of the ejector. Numerical results are obtained by means of both the straight solution of shock waves in supersonic flow field using classical relations of parameters of shock waves and the Fluent 6 program. Results of numerical solutions are compared with experimental pictures of flow fields. Flow structure development in the mixing chamber is analysed in detail.  相似文献   

18.
An ejector is a fluid pumping device that uses the energy of a high pressure motive fluid to raise the pressure of a secondary lower-pressure fluid. Motive pressure is converted into momentum through a choked nozzle creating a high velocity jet which entrains the surrounding low-momentum suction flow. The two streams mix and finally pressure is recovered through a diffuser. There has been little progress on high fidelity modeling of the expanding supersonic two-phase flow in refrigerant expansion work recovery ejectors due to rather complex physics involving nonequilibrium thermodynamics, shear mixing, and void fraction-dependent speed of sound. However, this technology can be applied to significantly increase the efficiency of space cooling and refrigeration devices. The approach developed in this study integrates models for real-fluid properties, local mass and energy transfer between the phases, and two-phase sonic velocity in the presence of phase change into a commercial CFD code. The intent is to create a practical design tool with better fidelity than HEM CFD models yet with tractability lacking in current boundary tracking phase change CFD models. The developed model has been validated through comparison of key performance metrics against test data under certain operating conditions.  相似文献   

19.
Mixing and combustion of a fuel with supersonic airstream in a scramjet combustor is a complex phenomenon because of very less resident time of the air in the combustion chamber. Mixing of fuel and air at supersonic speed and the subsequent combustion are greatly affected by the disturbance of the flow field in the form of shock waves, vortices and recirculation regions. In this research paper, the same concept has been considered by introducing an innovative strut fuel injector for the development of more shock waves and streamline vortices. The basic or standard computational domain of the scramjet combustor is considered from the reference of DLR experimental scramjet. The basic scramjet model consists of the wedge-shaped strut fuel injector. In this research, the strut injector has been re-designed such a way that to generate more oblique shock waves. Numerical analysis of the scramjet internal flow field has been performed with basic and innovative strut by solving the Reynolds-averaged Navier-Stokes equations with the help of computational fluid dynamics tool defined as ANSYS-FLUENT 16.0. The internal flow field of scramjet combustor with basic and innovative strut fuel injectors has been visualized from the analysis of pressure, temperature and velocity along with the analysis of flow structure, shock waves, and streamlines vortices. From the analysis of numerical results, it is identified that multiple numbers of oblique shock waves are being generated from the leading curved edge of the newly introduced strut. Both the pressure and temperature of airstream at the entrance of the combustion chamber are higher in the case of the wavy wall strut and it reduces the ignition delay time as compared to the basic strut model.  相似文献   

20.
为了提高超低比转速离心通风机的气动性能,通过理论分析提出了降低超低比转速离心风机内部损失的扩压器设计方法,采用数值模拟的方法得到不同直径旋转扩压器和静止扩压器的性能特点,从风机静压、效率、扩压器静压恢复系数和滞止压力损失系数等方面对其分析比较。研究得到:在设计流量下,旋转扩压器直径增大8.7%后,风机静压提升6.8%,效率提高3%,扩压器静压恢复系数提高62.9%,扩压器内滞止压力损失减少71.9%,表明在尺寸允许范围内适当增大扩压器直径可获得更高的静压升,同时降低损失、提高效率;另外,静止扩压器壁面与通流之间的剪切力更大,损失更多,设计流量下静止扩压器比等直径旋转扩压器滞止压力损失增加75.2%,表明旋转扩压器比静止扩压器有更好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号