首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
0.7Pb(ZrxTi1−x)O3–0.1Pb(Zn1/3Nb2/3)O3–0.2Pb(Ni1/3Nb2/3)O3 (0.7PZT–0.1PZN–0.2PNN, x = 0.44–0.47) piezoelectric powders and ceramics have been prepared through conventional solid-state reaction method. Outstanding piezoelectric and dielectric properties occurred at the morphotropic phase boundary (MPB), which was characterized by the X-ray diffraction spectrum. The MPB composition (x = 0.46) performed high d33 value (641 pC/N), indicating that the system suited large-strain application. The field-induced strain reached 0.25% under a considerably low electric field (0.8 kV/mm) according to the bipolar strain *SE loops. The effect of the grain size on the aging phenomenon and temperature stability has also been investigated. Due to higher Curie temperature and smaller grain size, the 0.7PZT–0.1PZN–0.2PNN ceramics maintained a high d33 level after depoling treatment, revealing a superior strain capacity for high-temperature application.  相似文献   

2.
《Ceramics International》2015,41(7):8367-8376
In this study, (1−x)[0.6Pb(Mg1/3Nb2/3)O3–0.4Pb(Zr0.52Ti0.48)O3]–xBa(Zn1/3Nb2/3)O3; (1−x)PMNZT60/40–xBZN having x=0, 2.5, 5, 7.5, and 10 mol% ceramics were prepared by mixed oxide powder method and sintered using a two-step process. Phase transitions were investigated by XRD, microstructure by SEM, crystal morphology by TEM, the dielectric and ferroelectric properties by capacitance measurement setup and modified Sawyer-Tower circuit, respectively. The dielectric constant and dielectric loss tangent were measured as functions of both temperature and frequency. The XRD results show the phase transition from tetragonal phase to pseudo-cubic phase with addition of BZN in PMNZT system. Grain size of about 1.23–2.42 μm and crystallite size in a range of 421–2152 nm were obtained. The pure-phase 0.6PMN–0.4PZT ceramics show the normal ferroelectric behavior. The 0.95(PMNZT60/40)–0.05BZN and 0.925(PMNZT60/40)–0.075BZN showed a broad and diffused dielectric properties and the dispersive phase transition, indicating the relaxor ferroelectric behavior. The transition temperature in the BZN-modified PMNZT system is seen to decrease from 166 °C in pure PMNZT60/40 to 102 °C and 54 °C with increasing BZN content to 5 and 10 mol%, respectively. In addition, the maximum dielectric constant is decreased with increasing BZN content. The PE hysteresis loop measurements show the change from the normal ferroelectric behavior in PMNZT60/40 ceramic to more relaxor behavior that was induced with BZN addition. These results clearly demonstrated the significance of BZN to the electrical responses of the PMNZT60/40 system.  相似文献   

3.
Pb(Mn1/3Nb2/3)O3–Pb(Zn1/3Nb2/3)O3–Pb(Zr0.52Ti0.48)O3 (designated as PMnN–PZN–PZT) piezoelectric ceramics were prepared and the effects of PMnN content on the crystal structure and electrical properties were investigated. The results show that the pure perovskite phase forms in these ceramics. The crystal structure changes from tetragonal to rhombohedral and the lattice constant decreases with increase of PMnN content. The morphotropic phase boundary (MPB) of xPMnN–(0.2 ? x)PZN–0.8PZT ceramics occurs where the content of PMnN, x, lies between 0.05 and 0.085 mol. The dielectric constant (?), piezoelectric constant (d33) and Curie temperature (Tc) decrease, while the mechanical quality factor (Qm) increases with the increase of PMnN content. The ceramic with composition 0.075PMnN–0.125PZN–0.8PZT has the optimal piezoelectric properties, ? is 842, d33 is 215 pC/N, Tc is 320 °C, kp is 0.57 and Qm amounts to 1020, which makes it a promising material for high power piezoelectric devices.  相似文献   

4.
The dielectric and electrical properties of xPb(Sc1/2Nb1/2)O3yPb(Ni1/3Nb2/3)O3zPbTiO3 (PSNNT 100x/100y/100z) ternary ceramic materials near the morphotropic phase boundary (MPB) were investigated. The MPB follows on almost linear region between PSNNT 58/00/42 and PSNNT 00/68/32 of the binary systems. The maximum electromechanical coupling factor kp=70·7% was found at PSNNT 36/26/38, where ε33T0=3019 and Tc=210°C were obtained. These values are similar to those of the Pb(Sc1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 system and better than those of PZT.  相似文献   

5.
《Ceramics International》2016,42(6):7223-7229
CuO modified Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) ternary relaxor based ferroelectrics with the composition near the morphotropic phase boundary were synthesized by two-step columbite precursor method. The introduction of CuO significantly improved the sinterability of PIN–PMN–PT ceramics, resulting in the full densification of samples at lower sintering temperatures. It also profoundly modified the crystal structure and fracture mode of the ceramics. Properly increasing CuO content led to the disappearance of rhombohedral-tetragonal phase transition, remarkably improved the Curie temperature (Tc), and made the ceramics more relaxorlike. The ternary ceramics doped with 0.25 wt% CuO possessed optimum piezoelectric properties (d33=584 pC/N, d33*=948 pC/N, and kp=0.68), high ferroelectric properties (Ec=9.9 kV/cm, and Pr=33.1 μC/cm2), low dielectric loss (tan δ=0.9%), and wider temperature usage range (Tc=225 °C). The obtained properties are much higher than those of previously reported PIN–PMN–PT based ceramics, indicating that CuO doped PIN–PMN–PT is a promising candidate for electromechanical applications with high performance and wide temperature/electric field usage ranges.  相似文献   

6.
《Ceramics International》2016,42(4):4893-4898
Dielectric relaxation properties of the ternary relaxor-based ferroelectric 0.24Pb(In1/2Nb1/2)O3–0.49Pb(Mg1/3Nb2/3)O3–0.27PbTiO3 single crystal have been investigated as a function of temperature (300–570 K) in the frequency range from 100 Hz to 100 kHz. It was found that the variation of the permittivity maximum temperature Tm with frequency obeys the Vogel–Fulcher relationship. The high-temperature (T>Tm) side of the dielectric permittivity deviated from the Curie–Weiss law, but can be described by the Lorenz-type relationship. The coercive field obtained from the polarization hysteresis loops gradually decreases with increasing temperature, and the remnant polarization persists above Tm due to the existence of polar nanoregions (PNRs).  相似文献   

7.
汪跃群  项光磊  高亮 《硅酸盐通报》2022,41(4):1433-1439
本文通过一步反应合成法制备了铌镁-锆钛酸铅(Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3,PMN-PZT)压电陶瓷,研究了稀土元素钐(Sm)掺杂对PMN-PZT(x%(摩尔分数)Sm-PMN-PZT)结构与电学性能的影响规律,得到了具有高压电性、高机电耦合系数和高居里温度的压电陶瓷。当x=2.0时,压电常数d33=611 pC/N,机电耦合系数kp=0.68,介电损耗tan δ=1.65%,相对介电常数εr=2 650,居里温度TC=283 ℃。测试压电陶瓷电致应变性能,在3 kV/mm下单极电致应变达到0.20%,显示出其大应变材料的特征。结果表明,Sm掺杂PMN-PZT压电陶瓷具有优异的综合电学性能,有望在换能器、传感器以及致动器等领域广泛应用。  相似文献   

8.
9.
通过部分草酸盐工艺制备了颗粒尺寸较小、粒度分布较均匀、团聚较少的(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT)前驱体.以活性PMN-PT前驱体为原料,通过固相反应法制备PMN-PT陶瓷.XRD测量表明,通过部分草酸盐工艺制备的PMN-PT陶瓷中含有少量的焦绿石相.随着PbTiO3 (PT)含量的增加,PMN-PT陶瓷的晶体结构从三方铁电相逐渐向四方铁电相转变.烧成的PMN-PT陶瓷具有较高的致密度.组分和烧结温度对PMN-PT陶瓷的电学性能产生影响.随着烧结温度的升高,PMN-PT陶瓷的介电常数最大值εm增大,伴随着εm对应的温度Tc/Tm的不规律变化;剩余极化强度Pr增大,矫顽场Ec减小;压电应变常量d33值增大.随着PT含量的增加,Tc/Tm增大,介电响应特征从弥散型铁电相变向正常铁电相变转变,电滞回线从狭长的回线向接近矩形的形状转变.0.68PMN-0.32PT陶瓷呈现优良的综合电学性能,1200℃烧结的陶瓷1kHz时εm为14070,Tm为148.2℃,d33值为457pC/N,Pr为14.69μC/cm2,Ec为4.72kV/cm.  相似文献   

10.
采用固相烧结法制备了0.40Pb(Mg1/3Nb2/3)O3-(0.6-x)PbZrO3-xPbTiO3压电陶瓷,系统研究了其组分变化对晶体结构、介电和压电性能的影响。研究结果表明,所有样品均属于钙钛矿结构,无第二相产生。随着组分的变化,存在三方相向四方相的转变,并且在x = 0.38附近获得准同型相界组分,呈现出最优的电学性能,最高的压电系数d33 = 520 pC/N,居里温度TC = 238 °C,平面机电耦合系数kp = 0.60,厚度机电耦合系数kt = 0.52,纵向机电耦合系数k33 = 0.73。  相似文献   

11.
采用两步法在850℃合成了(1-x)Pb(Ni1/3Nb2/3)O3-xPbTiO3(x=0.28~0.42)陶瓷,粉末均为单一钙钛矿相。扫描电子显微镜观察和介电性能检测表明:所研究的陶瓷的最佳烧结温度为1200℃。对1200C烧结的0.64Pb(Ni1/3Nb2/3)O3-0.36PbTiO3陶瓷的铁电性能进行了详细地研究,发现组成在准同型相界的陶瓷铁电性得到增强.而这种铁电性增强正是由组分及结构和准同型相界的本质共同决定的。  相似文献   

12.
探讨了Cr2O3掺杂对锑锰锆钛酸铅Pb(Mn1/3Sb2/3)0.05Zr0.47Ti0.48O3(简称PMSZT)压电陶瓷性能影响.通过X射线衍射,电子顺磁共振以及扫描电镜分析了PMSZT+z Cr2O3(z=0.2%~0.8%,质量分数)陶瓷的相组成,元素价态以及显微结构.结果表明:合成温度900℃保温2 h后,可以得到钙钛矿结构.随着Cr2O3掺杂量的增大,四方相的含量减少,准同相界向三方相移动.掺杂Cr2O3的质量分数为0.6%时:相对介电常数εr=1 650,介电损耗tanδ=0.006,压电常数d33=328 pC/N,机电耦合系数Kp=0.63,机械品质因数Qm=2 300,电性能优于Cr2O3掺杂量为0.2%,0.4%,0.8%的样品,但比未掺杂时的稍差.随着Cr2O3掺杂量的增加,PMSZT陶瓷的Curie温度降低,谐振频率变化率随温度变化由正变负.  相似文献   

13.
Electrocaloric (EC) cooling elements in the form of multilayers (MLs) were prepared. The elements consist of five layers of the relaxor-ferroelectric 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3, about 60 μm thick, with internal platinum electrodes and exhibiting a dense, uniform microstructure with a grain size of 1.7 μm. The largest temperature change ΔTEC of 2.26 K was achieved at an electric field (E) of 100 kV cm−1 and at 105 °C, measured by a high-resolution calorimeter. These results agree well with the indirect measurements. The EC coefficient, ΔTECE, obtained for the MLs, is similar to the value obtained for bulk ceramics of the same composition. The ΔTEC values above 2 K over a broad temperature range from 75 to 105 °C make the ML elements suitable candidates for EC cooling devices at significantly lower voltages than bulk ceramic plates with comparable dimensions and mass.  相似文献   

14.
Pb(Zn1/3Nb2/3)O3基陶瓷预合成和烧结工艺的研究   总被引:2,自引:0,他引:2  
基于Swartz and Shrout的二次合成法,采用改进的两步法,将部分原料预合成,一次烧结合成具有100%钙钛矿结构的75Pb(Zn1/3Nb2/3)O3-10PbTiO3-15BaTiO3固溶体陶瓷.首先一次性称量PbO,然后和ZnNb2O6混合,在660~800℃预合成,将预合成产物粉碎后再与TiO2和BaCO3按化学计量称量,充分混合后,在1060~1140℃保温1~2h烧结成陶瓷试样.实验结果表明:改进的两步法工艺能够将预合成温度降为660℃,烧结温度能被拓宽到80℃获得100%钙钛矿结构的固溶体陶瓷.不同于传统的预合成和烧结,改进的两步法工艺简单、有效,在预合成阶段没有形成钙钛矿相,烧结阶段陶瓷的成瓷和致密化同时进行,完成了中间相向钙钛矿相的转变,获得了介电性能优良的陶瓷试样.  相似文献   

15.
The doping of ZnO is efficient to improve the piezoelectric property and thermal stability of Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) based ceramics. However, the underlying physics, especially the local domain structures of the ZnO modified PMN–PT ceramics, which is strongly associated with the electric properties, is not clear yet. In this paper, we investigated the local domain structures and their evolution as a function of x in PMN–0.32PT:xZnO ceramics. It was found that, the domain evolution is mainly caused by the growth of grain size induced by the sintering aiding effect of ZnO at < 0.04, and the domain evolution can be attributed to the phase transition induced by the partial replacement of Mg2+ by Zn2+ in the B-site of PMN–PT lattice at > 0.06. Furthermore, we also investigated the domain structure evolution as functions of temperature and local external electric field in PMN–0.32PT:0.06ZnO ceramics, which exhibited superior piezoelectric property relative to other compositions. We found that the irregular nanodomains are more stable at high-temperature range, and the regular non-180° domains exhibited more complex rotation behavior under local electric field, which probably leads to the thermal stability and piezoelectric property enhancement in the ZnO-modified PMN–0.32PT ceramics.  相似文献   

16.
Temperature and field dependences of the dielectric constants under the DC biasing fields along the [011]- and [111]-directions in the cubic coordinate in Pb(Zn1/3Nb2/3)O3–4.5%PbTiO3 were investigated. The temperature–field phase diagrams were constructed in the field range below 10 kV/cm. It was confirmed that in Pb(Zn1/3Nb2/3)O3–4.5%PbTiO3 the intermediate tetragonal phase as a ground state of the system exists even without the DC field, and the tetragonal phase disappears in the external field above 4 and 3 kV/cm along the [011]- and [111]-directions, respectively. The field-induced orthorhombic-phase in the field along the [011]-direction was also found.  相似文献   

17.
Pb(Zn1/3Nb2/3)O3基复相陶瓷的室温介电老化行为   总被引:1,自引:0,他引:1  
研究了Pb(Zn1/3Nb2/3)O3基复相陶瓷的室温介电老化行为与材料烧成制度的关系,性机和介电常数与老化时间的对数值成线性关系,随烧成温度提高和保温时间延长,老化速率增大,老化速率对频率的依存性增加。低温短时间烧结的复相陶瓷的介电老化行为类似于正常铁电体,其老化起因于畴壁运动;而高温长时间烧结的复相陶瓷表现为典型弛豫电体的老化行为,起因于缺陷偶极子与极性微区的相互作用。  相似文献   

18.
目前、制备Pb(Zn1/3Nb2/3)O_3(PZN)基陶瓷电容器、最主要的问题是形成有害于介电性质的焦录石相。实验表明、固相反应法很难合成钙钛矿结构的PZN陶瓷。于1000℃经固相反应的产物是含立方焦录石的混合物、在PZN中添加0.25mol的PFW、试样中的钙钛矿相超过97%。通过对Pb(Fe2/3W1/3)O_3(PFW)结晶化学和烧结机理的分析、证明在PZN中添加PFW能减少或抑制焦录石的形成。本文报导了PZN—PFW二元系陶瓷的相关系和介电性质、探讨了钙钛矿相的形成机理。  相似文献   

19.
There is a great demand to develop ferroelectric ceramics with both high piezoelectric coefficient and broad temperature usage range for emerging electromechanical applications. Herein, a series of Sm3+-doped 0.25Pb(Mg1/3Nb2/3)O3-(0.75−x)PbZrO3-xPbTiO3 ceramics were fabricated by solid-state reaction method. The phase structure, dielectric and piezoelectric properties were investigated, where the optimum piezoelectric coefficient d33 = 745 pC/N and electromechanical coupling factor k33 = 0.79 were obtained at the morphotropic phase boundary composition x = 0.39, with good Curie temperature TC of 242°C. Of particular importance is that high-temperature stability of the piezoelectric and field-induced strain was obtained over the temperature range up to 230°C for the tetragonal compositions of x = 0.40. The underlying mechanism responsible for the high piezoelectricity and temperature stability is the synergistic contribution of the MPB and local structural heterogeneity, providing a good paradigm for the design of high-performance piezoelectric materials to meet the challenge of piezoelectric applications at elevated temperature.  相似文献   

20.
Ba(Co1/3Nb2/3)O3(BCN) has a 1:2 ordered hexagonal structure. A large amount of the liquid phase, which contains high concentrations of Ba and Nb ions was found in the BCN ceramics. Q-values of BCN increased with increasing sintering temperature; however, it significantly decreased when the sintering temperature exceeded 1400 °C. The presence of a large amount of liquid phase could be responsible for the decrease of the Q-value. For (1−x)Ba(Co1/3Nb2/3)O3xBa(Zn1/3Nb2/3)O3 [(1−x)BCN–xBZN] ceramics, the 1:2 ordered hexagonal structure was observed in the specimens with x⩽0.3 and the BaNb6O16 second phase was found in the specimens with x⩾0.6. Grain growth, which is related to the BaNb6O16 second phase occurred in the specimens with x⩾0.5. In this work, the excellent microwave dielectric properties of τf=0.0 ppm/°C, εr=34.5 and Q×f=97,000 GHz were obtained for the 0.7BCN–0.3BZN ceramics sintered at 1400 °C for 20 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号