首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al2O3-YAG (50 vol.%) nanocomposite powders were prepared by wet-chemical synthesis and characterized by DTA-TG, XRD and TEM analyses. Amorphous powders were pre-heated at different temperatures (namely 600 °C, 800 °C, 900 °C and 1215 °C) and the influence of this thermal treatment on sintering behavior, final microstructure and density was investigated. The best performing sample was that pre-calcined at 900 °C, which yields dense bodies with a micronic/slightly sub-micronic microstructure after sintering at 1600 °C. A pre-treatment step to induce controlled crystallisation of the amorphous powder as well as a fast sintering procedure for green compacts, were also performed as a comparison.Finally, the previously stated thermal pre-treatment of the amorphous product was coupled to an extensive mechanical activation performed by wet planetary/ball milling. This procedure was highly effective in lowering the densification temperature, so that fully dense Al2O3-YAG composites, with a mean grain size smaller than 200 nm, were obtained by sintering in the temperature range 1370–1420 °C.  相似文献   

2.
Monophasic mullite precursors with composition of 3Al2O3·2SiO2 (3:2) were synthesized and then were sintered by Spark Plasma Sintering (SPS) to form transparent mullite ceramics. The precursor powders were calcined at 1100 °C for 2 h. The sintering was carried out by heating the sample to 1450 °C, holding for 10 min. The sintered body obtained a relative bulk density of above 97.5% and an infrared transmittance of 75–82% in wavelength of 2.5–4.3 μm without any additive. When the precursor powders were calcined at below 1100 °C, it was unfavorable for completely eliminating the residual OH, H2O and organic compound. However, when calcined temperature was too high, it was unfavorable either for full densification due to the absence of viscous flow of amorphous phase. At the same calcined temperature, the transmittance of sintered body was decreased with the increase of the sintering temperature above 1450 °C owing to the elongated grain growth.  相似文献   

3.
n-Type Ca0.9Yb0.1MnO3?δ thermoelectric (TE) powders were prepared by solid state synthesis (SSS) and co-precipitation method (Cop). The bulk TE materials were consolidated using conventional sintering (CS) and spark plasma sintering (SPS) respectively. The shrinkage behavior, as well as the sample densification strongly depends on the starting particle size. Consequently, the bulk samples from normal powder (SSS) and nano-powder (Cop) were prepared with similar density by using different sintering temperatures, of 1400 °C and 1200 °C, then 1200 and 950 °C for CS and SPS respectively. Such a decrease (up to 200 °C) of the sintering temperature is a consequent progress in terms of engineering for applications. Another advantage of the co-precipitation process compared to the conventional solid state synthesis is that, due to the small particle sizes and the decreased sintering temperature, grain growth was limited and TE properties were enhanced. The interest of the SPS process was also evidenced and we are presenting here the structural and microstructural investigations. In addition, the thermoelectric properties of samples prepared with two different processes were studied with the figure of merit of 0.18 at 750 °C.  相似文献   

4.
《Ceramics International》2015,41(6):7645-7650
Nano-sized ZnTiTa2O8 powders with ixiolite structure, with particle sizes ranging from 10 nm to 30 nm, were synthesized by thermal decomposition at 950 °C. The precursors were obtained by aqueous sol–gel and the compacted and sintered ceramics with nearly full density were obtained through subsequent heat treatment. The microstructure and electrical performance were characterized by field emission scanning electron microscopy, x-ray diffraction, and microwave dielectric measurements. All the samples prepared in the range 950–1150 °C exhibit single ixiolite phase and relative density between ~87% and ~94%. The variation of permittivity and Q·ƒ value agreed with that of the relative density. Pure ZnTiTa2O8 ceramic sintered at 1050 °C for 4 h exhibited good microwave dielectric properties with a permittivity of 35.7, Q·ƒ value of 57,550 GHz, and the temperature coefficient of resonant frequency of about −24.7 ppm/°C. The relatively low sintering temperature and excellent dielectric properties in the microwave range would make these ceramics promising for applications in electronics.  相似文献   

5.
Alumina specimens doped with 1 wt.% of titanium oxide were successfully prepared by three different synthesis routes: Pechini method, coprecipitation and sol–gel processes. This paper describes the phase sequence in each synthesis process and its effect on the final particle size and shape, as well as, on the microstructure of the calcined powders and the sintering behaviour. The intermediate phases to obtain α-alumina were κ-Al2O3, θ-Al2O3 and γ-Al2O3for the Pechini, coprecipitation and sol–gel processes, respectively, as could be detected by FT-IR and XRD. Secondly, the calcined powders were isopressed and sintered at 1625 °C for 4 h. Density measurements, and microstructure were investigated by Archimedes method and TEM/SEM, respectively. The sintering behaviour of the materials is discussed on the basis of the characteristic of the metastable phases obtained by each route. Coprecipitation yielded rounded particles with the smallest size. Sol–gel process produced larger grains with vermicular shapes and Pechini method led to hexagonal corundum crystals.  相似文献   

6.
Single-phase BiFeO3 powders were prepared at a temperature of 200 °C by a hydrothermal synthesis. BiFeO3 ceramics were prepared with the powders by a conventional ceramic process. The BiFeO3 ceramics with no impurity phase were prepared at the sintering temperature of 650–800 °C. The dense microstructure was observed in the BiFeO3 ceramics sintered at a temperature of 700 °C and higher. BiFeO3 ceramics show linear M–H curves in low H, which are antiferromagnetic behaviors. The dielectric dispersion was observed at the frequency range of 10 kHz to 1 MHz in the BiFeO3 ceramic sintered at 700 °C or lower. The dielectric constant and loss of the BiFeO3 ceramics sintered at 750 °C or higher were about 85 and 0.4 at 100 kHz, respectively.  相似文献   

7.
SrCo0.9Sc0.1O3 (SCSc) perovskite powders with sub-micron particle size were synthesized by a modified Pechini method combined with a post-treatment of sintering and ball-milling. From the prepared powders, the SCSc hollow fibre membranes with asymmetric structure and gas-tight property were fabricated by spinning a polymer solution containing 58.4 wt% SCSc followed by sintering at 1200 °C for 5 h. The oxygen permeation properties of the obtained SCSc fibres were measured under air/He gradients at 500–800 °C. This showed the oxygen flux of 1 mL cm?2 min?1 at 750 °C and 4.41 mL cm?2 min?1 at 900 °C. Modeling analysis reveals that the oxygen permeation process is predominated by oxygen surface exchange kinetics with an activation energy of 95.0 kJ mol?1. The SCSc membranes showed excellent oxygen permeation performance while exhibiting high structural and permeating stability at intermediate temperatures (500–800 °C).  相似文献   

8.
Ba1−xSrxTiO3 (x = 0, 0.20, 0.25, 0.30 and 0.35) nanopowders were prepared by Pechini method from titanium isopropoxide, barium and strontium carbonates using citric acid as a chelating agent and ethylene glycol as an esterification agent. X-ray diffraction data show the formation of (Ba,Sr)TiO3 solid solutions, free from secondary phases as BaCO3 or Ti-rich oxides, when the polymeric precursors were calcined in air at 850 °C for 2 h. Ceramic pellets with relative density of 85–93% were obtained after sintering at 1350 °C for 3 h. High values of the dielectric constants (of ∼1500–12,000), low losses at the room temperature and a shift of the ferro-para phase transition temperature in the range of 7–127 °C with x decreasing were found. Lower values of the Curie constant for higher x indicate the increase of the chemical and electrical local heterogeneity degree.  相似文献   

9.
《Ceramics International》2016,42(7):8108-8114
Ultra-fine hafnium carbide (HfC) powders were synthesized using a novel method combining liquid precursor conversion and plasma activated sintering (PAS). Solution-based processing was used to achieve a fine-scale mixing of the reactants, and further treatment by PAS allowed fast formation of HfC. We investigated the effect of the type of acid used during the liquid precursor conversion on the synthesized powders, where mixtures were prepared using salicylic acid, citric acid, or a combination of these. The results show that pure HfC powders (with an average particle sizes of 350 nm) were obtained at a relatively low temperature (1550 °C) using a HfOCl2·8H2O precursor with the mixed acids. The oxygen content of the synthesized powders was only 0.97 wt%. The type of acid had a significant effect on the synthesis product. When using only citric acid, the temperature required to produce pure hafnium carbide increased to 1700 °C. In the case of a salicylic acid precursor, pure HfC was not obtained, even at a synthesis temperature of 1700 °C.  相似文献   

10.
Using non-aqueous Pechini method, Pb(Zr0.95Ti0.05)O3 powders were prepared at low temperature by one-step pyrolysis process. The polymeric gels and powders were characterized using a range of techniques, such as DTG, XRD, SEM, Raman spectroscopy, and laser particle size distribution. The perovskite phase was formed at about 350–400 °C and some oxocarbonate impurities can be detected in all samples after calcining at 400–850 °C by one-step pyrolysis process. Phase pure and porous Pb(Zr0.95Ti0.05)O3 ceramics were obtained without pore formers from the powders by one-step pyrolysis process at 500 °C for 4 h. The relative densities were 87%, 91% and 94% for the ceramics sintered at 1100, 1150 and 1200 °C for 2 h, respectively. The porous ceramics sintered at 1200 °C for 2 h have homogeneously dispersed pores and fine-grain structures with an individual grain size of 0.7–2 μm.  相似文献   

11.
Si3N4–TiN composites were successfully fabricated via planetary ball milling of 70 mass% Si3N4 and 30 mass% Ti powders, followed by spark plasma sintering (SPS) at 1250–1350 °C. The sintering mechanism for SPS was a hybrid of dissolution–reprecipitation and viscous flow. The electrical resistivity decreased with increasing sintering temperature up to a minimum at 1250 °C and then increased with the increasing sintering temperature. The composites prepared by SPS at 1250–1350 °C could be easily machined by electrical discharge machining. Composite prepared by SPS at 1300 °C showed a high hardness (17.78 GPa) and a good machinability.  相似文献   

12.
《Ceramics International》2016,42(9):11161-11164
The effects of Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass on the sintering characteristics and microwave dielectric properties of (Zn0.95Co0.05)2SiO4 were investigated in this study. (Zn0.95Co0.05)2SiO4 powders were fabricated by traditional solid-state preparation, and LBBS glass was synthesised by quenching method. The LBBS glass can effectively reduce the sintering temperature of (Zn0.95Co0.05)2SiO4 from 1300 °C to 900 °C and thus promote the densification and uniformity of the specimens. XRD patterns indicated that no other secondary phases existed in our doping range (0–2 wt%). To obtain the highest sintering density and a uniform microstructure when the samples were sintered at 900 °C, the optimal doping content was set to be 1.5 wt%. The sample also demonstrated the following excellent microwave dielectric properties: ɛr=6.16, Qf=33,000 GHz and τf=−59 ppm/°C.  相似文献   

13.
Aluminum borocarbide powders (Al3BC3 and Al8B4C7) were synthesized, and the ternary powders were used as a sintering additive of SiC. The densification of SiC was nearly completed at 1670 °C using spark plasma sintering (SPS) and pressureless sintering was possible at 1950 °C. The sintering behavior of SiC using the new additive systems was nearly identical with that using the conventional Al–B–C system, but grain growth was suppressed when adding the borocarbides. In addition, oxidation of the fine additive powders did not intensively occur in air, which has been a problem in the case of the Al–B–C system for industrial application. The hardness, Young's modulus and fracture toughness of a sintered SiC specimen were 21.6 GPa, 439 GPa and 4.6 MPa m1/2, respectively. The ternary borocarbide powders are efficient sintering additives of SiC.  相似文献   

14.
Trirutile-structure MgTa2O6 ceramics were prepared by aqueous sol–gel method and microwave dielectric properties were investigated. Highly reactive nanosized MgTa2O6 powders were successfully synthesized at 500 °C in oxygen atmosphere with particle sizes of 20–40 nm. The evolution of phase formation was detected by DTA–TG and XRD. Sintering characteristic and microwave dielectric properties of MgTa2O6 ceramics were studied at different temperatures ranging from 1100 to 1300 °C. With the increase of sintering temperature, density, ?r and Q · f values increased and saturated at 1200 °C with excellent microwave properties of ?r  30.1, Q · f  57,300 GHz and τf  29 ppm/°C. The sintering temperature of MgTa2O6 ceramics was significantly reduced by aqueous sol–gel process compared to conventional solid-state method.  相似文献   

15.
The effect of sintering processes, such as open sintering, sintering inside a closed crucible, and sintering within a powder bed, on the microstructure and VI characteristics of ZnO–Bi2O3-based varistor ceramics was investigated at sintering temperatures in the range 1000–1200 °C. The results from the experiments showed that the microstructure and electrical properties of the samples varied according to the sintering method and temperature. Optimal values for the electrical characteristics of the varistor ceramics by different sintering processes were obtained when the sintering was conducted at 1100 °C. At the same sintering temperature, the different processes affected the properties differently. At 1000 °C, the samples sintered within a powdered bed showed better electrical properties than those subjected to the other two processes, while at 1100 or 1200 °C, the samples sintered in an open crucible exhibited the best electrical properties.  相似文献   

16.
Bismuth ferrite powders were synthesized by a simple sol–gel method at the temperature as low as 450 °C. Single phase BiFeO3 powders with a rhombohedral perovskite structure were fabricated after Bi–Fe gels were calcined at 450–650 °C. Atomic ratio of Bi to Fe is approximately 1:1 for BiFeO3 powders, as determined by energy dispersive X-ray spectrometer. BiFeO3 powders show weak ferromagnetism at room temperature and strong size-dependent magnetic properties, which is different from the linear MH relationship in BiFeO3 ceramics. Dielectric anomaly at round 330 °C near the magnetic transition point corresponds to the antiferromagnetic to paramagnetic phase transition, indicating the coupling between polarization and magnetization in BiFeO3 powders. A reversible ferroelectric phase transformation of BiFeO3 powders has been detected at 827 °C by a differential thermal analysis.  相似文献   

17.
The aim of the present study was to establishing the correlation between the structure and properties of the LaCoO3 powders obtained by aqueous sol–gel method with citric acid and their sintering behavior in order to obtain fully densified ceramics with perovskite structure. Two types of cobalt and lanthanum reagents were used in synthesis, namely nitrates and acetates. The sintering was realized at temperatures ranging between 800 and 1200 °C for 2 h. The sintered samples were investigated by classical ceramic methods (shrinkage, density, porosity) and by structural and morphological investigations: XRD, SEM, AFM and XPS. The electrical properties of the samples were determined by impedance spectroscopy. The ceramics obtained with powders starting with acetates have presented a lower sintering ability as compared with the samples obtained from powders starting with nitrates. LaCoO3 ceramics with best properties was obtained from powders starting with nitrates sintered at 1100 °C.  相似文献   

18.
Pseudobrookite-type Mg5Nb4O15 ceramics were prepared by aqueous sol–gel process and microwave dielectric properties were investigated. Highly reactive nanosized Mg5Nb4O15 powders were successfully synthesized at 600 °C in oxygen atmosphere with particle sizes of 20–40 nm firstly and then phase evolution was detected by DTA-TG and XRD. Sintering characteristics and microwave dielectric properties of Mg5Nb4O15 ceramics were studied at different temperatures ranging from 1200 °C to 1400 °C. With the increase of sintering temperature, density, ?r and Q·f values increased, and then saturated at 1300 °C. Excellent microwave properties of ?r ~11.3, Q·f ~43,300 GHz and τf ~?58 ppm/°C, were obtained finally. The sintering temperature of Mg5Nb4O15 ceramics was significantly reduced by aqueous sol–gel process compared to conventional solid-state methods.  相似文献   

19.
Magnesium aluminate spinel oxides have been prepared via poly(N-isopropylacrylamide) assisted microwave technique. The prepared MgAl2O4 powders showed a crystalline cubic structure with spinel phase after calcination at 600 °C only. The poly(N-isopropylacrylamide) amount showed a high effect on the crystallite size and the densification behavior of MgAl2O4. The increase of the amount of poly(N-isopropylacrylamide) reduced the sintering temperature of MgAl2O4 from 1400 °C to 1050 °C. The hot-pressed of MgAl2O4 powders in the presence of 3 wt% of poly(N-isopropylacrylamide) exhibited a full density at sintering temperature 1100 °C in 15 min only. The sintered films showed high transparency (81 ± 2%) in the wavelength range 500–1000 nm.  相似文献   

20.
Single phase hexagonal α-Ta2C ceramics were synthesized by spark plasma sintering and using TaC and Ta as the starting powders. Effects of sintering temperatures and holding times on the densification process, phase formation, microstructure development, and mechanical properties of the α-Ta2C ceramics were investigated. Densification occurred in the temperature range of 1520–1675 °C in less than 2.5 min. But completion of the Ta2C formation took about 40 min at 1500 °C, and 5 min at 1900 °C. The materials sintered at 1500 °C consisted of fine equiaxed grains. The Ta2C grains grew anisotropic to form an elongated self-toughening microstructure at 1700 °C. At 1900 °C, the neighboring Ta2C individual crystals coalesced to form large Ta2C blocks to entrap the residual pores. Although higher flexural strength and fracture toughness were reached at 1700 °C, the unstable microstructures of the Ta2C materials indicated limited applications at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号