首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline aluminas with various concentrations of oxide dopants CaO, MgO, and TiO2, ranging from 0.05 wt.% to 5 wt.%, as well as pure alumina references were prepared by slip casting from suspensions with various solid loading (30, 35, and 40 vol.% of Al2O3), and sintered at 1350 °C for 1 h as low loss tangent electroceramics. As the key parameter for intended application the loss tangents were measured at room temperature in the frequency range between 1 and 200 kHz. In the case of pure alumina the lowest value of loss tangent was achieved in the materials with minimum residual porosity. The values of loss tangents of doped materials were influenced by the concentration of dopants. The addition of 0.05 and 0.5 wt.% of MgO and CaO decreased the value of loss tangent in the whole frequency range. The effect was related to more homogenous microstructure with lower concentration of defects (pores) resulting from the addition of dopants. The increased values of loss tangent in the materials with higher level of additives (5 wt.%) are related to lower density of the materials, and the presence of residual porosity. Other contributing factors are the formation of secondary phases (calcium, magnesium and titanium aluminates), and the increased concentration of lattice defects due to incorporation of atoms with different valencies to alumina crystal lattice.  相似文献   

2.
Recent studies show that alumina doped with TiO2 exhibits promising dielectric properties, corresponding to low loss tangents and low temperature coefficients (or close to 0 ppmC−1). This paper aims to confirm these trends and study the dielectric properties of alumina doped with TiO2 from 0.5% to 12% wt. at high frequency, 13–73 GHz. This work demonstrates that alumina doped with TiO2 corresponds to potential materials for frequency converter devices working at a high frequency (up to 50 GHz).  相似文献   

3.
Dielectric loss tangent at microwave frequency is mainly determined by the anharmonic terms in the crystal's potential energy. In addition, there is a kind of lattice defect that increases the dielectric loss tangent seriously. This paper presents the experimental results for two materials; the system Ba(Zn,Ta)O3–BaZrO3 and (Zr,Sn)TiO4. The dielectric loss tangents of the system Ba(Zn,Ta)O3–BaZrO3 increases seriously when the B-site ions distribute disorderedly in the crystal. The doping of oxygen vacancies and acceptor ions in (Zr,Sn)TiO4 increase tan δ by the way they increase the gradient and intercept of linear frequency dependency of tan δ. These experimental results are reasonably explained by Schlömann's theory. He predicted that the dielectric loss tangent increases when the ions are distributed disorderedly in a way that they break the periodic arrangement of charges in the crystal, and that the increase of tan δ is negligible if the disordered charge distribution maintains the charge neutrality within a short range of the lattice constant in the crystal.  相似文献   

4.
《Ceramics International》2016,42(14):15405-15413
The rationalization of selection of sintering additives for α-alumina was investigated using two oxides (MgO and TiO2) to discern their individual roles. Using both dynamic heating study in a thermomechanical analyzer and static heat treatment, the precise role of each oxide was established. Grain growth trajectory of different doped samples sintered at 1700 °C revealed that MgO neither significantly affected densification nor facilitated grain growth upto 1700 °C. MgO reacted with alumina to form spinel prior to the densification process. Thus it could not generate further extrinsic defects in corundum lattice during sintering, which usually facilitate densification. In contrast, TiO2 significantly enhanced the densification and promoted grain growth in α-alumina. At 1700 °C, the average grain size of titania doped samples were 7.7x larger than undoped ones and 10x larger than magnesia dopes samples. The sintered grains developed higher aspect ratio when TiO2 was used which may be ascribed to preferred growth of the 012 and 024 planes of corundum. The nearly perfect junction of grain boundaries meeting at ~120° indicates absence of liquid phase and that the entire sintering process most probably took place in solid state for both MgO and TiO2 doped samples.  相似文献   

5.
(In + Nb) co-doped TiO2 nanoparticles with very low dopant concentrations were prepared using a glycine nitrate process. A pure rutile—TiO2 phase with a dense microstructure and homogeneous dispersion of dopants was achieved. By doping TiO2 with 1.5% (In + Nb) ions, a very high dielectric permittivity of ε′ = 42,376 and low loss tangents of tanδ = 0.06 (at room temperature) were achieved. The large conduction activation energy at the grain boundary decreased with decreasing dopant concentration. The colossal permittivity was primarily attributed to the internal barrier layer capacitor (IBLC) effect. The dominant effect of interfacial polarization at the non–Ohmic sample–electrode contact was observed when the dopant concentration was ≤1.0 mol%. Interestingly, the sample–electrode contact and resistive–outer surface layer effects, i.e., surface barrier layer capacitor (SBLC) effect, has also an effect on the colossal dielectric response in (In + Nb) co-doped TiO2 ceramics.  相似文献   

6.
Undoped TiO2 exhibited deterioration in microwave (MW) dielectric loss as it reached its maximum density due to the reduction of Ti4+ to Ti3+ causing oxygen vacancies at high sintering temperatures. By adding small amounts of acceptor dopants with ionic radii between 0.5 and 0.95 Å, reduction during sintering was suppressed. The upper limit of ionic radius was discrete with almost no observed effect using dopants >0.96 Å ionic radius. In addition, the microwave dielectric loss of undoped TiO2 could be improved by annealing at 1500 °C for 10 h in air, presumably as a result of re-oxidation. High loss samples exhibited a dark ‘core’ to the naked eye which was absent in low loss ceramics. Transmission electron microscopy revealed that grains in the dark core contained planar defects attributed to the condensation of O vacancies onto specific crystallographic planes, in a manner similar to that observed in Magnelli phases.  相似文献   

7.
(100-x) wt.% BaTi0.85Sn0.15O3–x wt.% MgO (BTS/MgO) composite ceramics were prepared by spark plasma sintering (SPS) technology. Phase constitution, microstructure, dielectric and electrical energy storage properties of BTS/MgO composite ceramics were investigated. The samples prepared by SPS had smaller grain size and presented layer-plate substructure. Dielectric permittivity and dielectric loss of BTS/MgO composite ceramics decreased significantly with the content of MgO increasing, and dielectric tunability maintained a relatively high value (>45%). Meanwhile, the dielectric breakdown strength was improved when addition of MgO in BTS matrix, which resulted in a significant improvement of energy storage density. The high dielectric breakdown strength of 190 kV/cm, energy storage density of 0.5107 J/cm3 and energy storage efficiency of 92.11% were obtained in 90 wt.% BaTi0.85Sn0.15O3–10 wt.% MgO composite ceramics. Therefore, BTS/MgO composites with good tunable dielectric properties and electrical energy storage properties could be exploited for energy storage and phase shifter device applications.  相似文献   

8.
LiAl5O8 (zeta alumina) was reaction sintered with α-Al2O3 and AlN to produce γ-LiAlON. Zeta alumina transforms from a primitive to a face-centered cubic structure above 1290 °C with a lattice parameter similar to γ-AlON. Weight loss measurements combined with XRD suggest solubility of Li in the spinel structure at elevated temperatures. The Vickers hardness, at a 1-kg load, of the pressureless sintered LiAlON was 16.5 ± 0.5 GPa, independent of the grain size or amount of zeta alumina added, for LiAl5O8 additions ranging between 0 and 16 wt.%. In-line transmission in the visible and near-IR regions increased with increasing grain size, most likely due to pore coalescence.  相似文献   

9.
《Ceramics International》2017,43(15):12186-12190
BaZr0.15Ti0.85O3 ceramics are prepared via the conventional solid state reaction method. The effects of Bi2O3·3TiO2 doped on dielectric properties and breakdown strength of BaZr0.15Ti0.85O3 ceramics are systematically discussed. Doping of Bi2O3·3TiO2 can obviously improve the breakdown strength and reduce the dielectric loss of the material. It is attributed to the Bi3+ substituted Ba2+ is an unequal ion substitution, and two Bi3+ substitute three Ba2+ to produce an A vacancy, thereby increasing the lattice energy and promoting the diffusion and migration of the particles during the sintering process, promoting the sintering and reducing the sintering temperature. However, the dielectric constant of the material is decreased. When the amount of Bi2O3·3TiO2 is 12 mol%, the minimum dielectric loss tanδ = 0.0009, the maximum breakdown strength is Eb = 15.09 kV/mm, the insulation resistivity is 3.52 × 1011 Ω cm. The energy storage density of the BaZr0.15Ti0.85O3 ceramic samples doped with Bi2O3·3TiO2 varies from 0.008 J/cm3 to 0.012 J/cm3.  相似文献   

10.
《Ceramics International》2017,43(7):5547-5556
The aim of this work is to determine the effect of TiO2 on sintering and mechanical proprieties of new multifunction resistant (MFR) porcelain prepared from local abundant raw materials. Based on a preliminary work, the new selected composition was 30 wt% kaolins (20 wt% kaolin halloysite type + 10 wt% kaolin Tamazart), 45 wt% k-feldspar and 25 wt% quartz and containing different contents of TiO2 (3, 5 and 8 wt%). The sintering temperatures of mixtures were between 1140 and 1260 °C. Subsequently, the obtained phases in the elaborated samples were investigated by X-ray diffraction and Fourier transform infrared spectroscopy analyses, Raman spectroscopy and SEM analysis. The optimum sintering conditions gave a higher bulk density (2.47 g.cm−3) and excellent mechanical properties: The three point flexural strength (3PFS), Vickers micro-hardness (VMH) and apparent porosity (PA) of porcelains sintered at 1160 °C were 238 MPa, 12.3 GPa and 2%, respectively. This obtained 3PFS value is drastically higher than that achieved for conventional porcelains (ranged between 60 and 80 MPa). Moreover, these two best 3PFS (238 MPa) and VMH (12.3 GPa) values achieved for this new MFR porcelains were considerably higher when compared to those values (3PFS=218 MPa and VMH=6.5 GPa) obtained by others for porcelain −30% ZrO2 composite, even though their mixtures were hot pressed in vacuum at 970 °C for 2 min. Besides, the maximum value achieved for the new MFR porcelains is nearby that of the flexural strength of porcelain containing 5 wt% TiO2 and 30 wt % alumina (about 240 MPa). In other words, the presence of 30 wt % alumina in their product well confirm the benefic effect of the used raw materials (saving 30 wt % alumina) on porcelain strengthening.  相似文献   

11.
《Ceramics International》2017,43(6):5108-5114
Coarse alumina powder compacts doped with various amounts of titania and copper oxide were pressurelessly sintered from 900 °C to 1600 °C. Their phase assemblages and microstructural evolution, as well as their properties, were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry/thermogravimetric (DSC/TG) analysis, and three-point bending and wetting test. The role of TiO2 and CuO during the sintering is discussed in detail. The experimental results show that the liquid phase from the copper oxide appeared at approximately 1200 °C, so the solid-state reaction between alumina and titania took place at a lower temperature. Such solid state-reaction sintering had a strong impact on the grain growth and greatly promoted the densification of the alumina compact. In addition, the liquid phase inhibited the abnormal grain growth and microcracking. As a result, the coarse alumina powder compacts doped with 5 wt% TiO2–CuO were fully densified and exhibited sufficient flexural strength (342±21 MPa) when sintered at a temperature of 1450 °C for 2 h.  相似文献   

12.
Stability of suspensions of TiO2 nanoparticles synthesized by the flame aerosol reactor (FLAR) could be altered by doping TiO2 nanoparticles with Pt, Pd, or Pt–Pd dopants. It was found that doping of TiO2 with Pd or Pt could contribute to the control of the agglomeration of TiO2 suspended in water. With the change of doping content, the isoelectric point (IEP) of stable TiO2 suspension decreased gradually from 5 to 3.6 while the specific surface area was increased from 43.27 to 60.84 m2/g. With pH > 6.0, 2 wt% Pt–Pd/TiO2 suspension exhibited the lowest agglomeration behavior. The plausible intrinsic structures of Pt, Pd, and Pt–Pd doped TiO2 nanoparticles were proposed and discussed with respect to their IEP based on the DLVO theory.  相似文献   

13.
Bi2O3–TiO2 composites are known to possess attractive microwave dielectric properties. However, producing LTCC analogues with equally promising dielectric properties is problematic. Here, we show that judicious choice of both TiO2 starting powders and dopants can produce composites with excellent properties. Three TiO2 powders were evaluated: 1 μm-anatase, 1 μm-rutile and a nanosized (30 nm) mixture of 75–25 anatase-rutile. The best dielectric properties were obtained by using uncalcined nanosized anatase/rutile with Bi2O3 powder. By doping this Bi2O3–TiO2 powder mixture with 0.112 wt.% CuO dielectric properties of Q × f = 9000 GHz, ɛr = 80 and τf = 0 ppm/K (at 300 K) were obtained at a sintering temperature of 915 °C.  相似文献   

14.
Polycrystalline BaxSr1−xTiO3 (x = 0.3, 0.4, 0.5) (BST) thin films with a thickness of 200 nm were deposited on r-cut sapphire substrates by rf sputtering method. The permittivity and loss tangent of the films were successfully observed in the range of 1–3 GHz, by utilizing the on-wafer through-reflect-line (TRL) calibration method although the estimated relative permittivity depended on an applied power to waveguides and the loss tangent had the dispersion around 1 GHz even in the case of 2 μm-thick aluminum. Finally, we concluded that the BST thin film with x = 0.4 is the most suitable for microwave tunable devices because it had the lowest loss tangent and relatively high permittivity.  相似文献   

15.
We report on a new approach to the synthesis of Eu3+ doped TiO2 nanocrystals and prolate nanospheroids. They were synthesized by shape transformation of hydrothermally treated titania nanotubes at different pH and in the presence of Eu3+ ions. The use of nanotubes as a precursor to the synthesis of Eu3+ doped TiO2 nanocrystals and prolate nanospheroids opens the possibility of overcoming the problems related to molecular precursors. The shapes and sizes of the nanotubes, Eu3+ doped TiO2 nanocrystals and prolate nanospheroids were characterized by transmission electron microscopy (TEM) technique. Crystal structures of the resultant powders were investigated by X-ray diffraction (XRD) analysis. The percentage ratio of Eu3+ to Ti4+ ions in doped nanocrystals was determined using inductively coupled plasma atomic emission spectroscopy. The optical characterization was done by using fluorescence and ultraviolet-visible reflection spectroscopies. An average size of faceted Eu3+ doped TiO2 nanocrystals was 13 nm. The lateral dimensions of Eu3+ doped TiO2 prolate nanospheroids varied from 14 to 20 nm, while the length varied from 40 to 80 nm, depending on precursor concentrations. The XRD patterns revealed the homogeneous anatase crystal phase of Eu3+ doped TiO2 nanocrystals and prolate nanospheroids independently of the amount of dopant. A postsynthetic treatment (filtration or dialysis) was applied on the dispersions of the doped nanoparticles in order to study the influence of the dopant position on photoluminescence (PL) spectra. In the red spectral region, room temperature PL signals associated with 5D0  7FJ (J = 1–4) transitions of Eu3+ were observed in all samples. The increased contribution of dopants from the interior region of dialyzed nanocrystals to photoluminescence was confirmed by the increase of R value.  相似文献   

16.
Two different preparation routes were applied to process WC-MgO composites with varying MgO contents (4.1 wt.% and 5.9 wt.% MgO). WC-MgO powder mixtures were synthesized by a milling process at 600 rpm for 6 h of partially oxidized WC (WC + WO3), Mg3N2 and C. Alternatively, WC and MgO as initial powders were used. For consolidation of the powder mixtures the field-assisted sintering technology (FAST) was used. X-ray diffraction shows that samples out of different powder mixtures and sintered between 1600 °C and 1750 °C exhibited WC, MgO and the W2C phase independent of the preparation route of the powder mixtures. A higher density and better mechanical properties (hardness and indentation fracture toughness) of WC-MgO were achieved of pure WC and MgO as initial powders were consolidated by FAST. It was found that a lower MgO content results in higher hardness values and in a slightly decreased indentation fracture toughness.  相似文献   

17.
A cost-effective tubular macroporous ceramic support consisting of alumina and titania was prepared by extrusion and subsequent heat treatment. An Al2O3/TiO2 composite support with high porosity (41.4%), an average pore size of 6.8 μm and sufficient mechanical strength (32.7 MPa) was obtained after sintering at 1400 °C. The formation mechanism of this support as investigated with X-ray micromapping, SEM and XRD indicated that the appearance of Al2TiO5 plays a key role in the fabrication of high performance composite membrane supports at relatively low temperature. The amount of Al2TiO5 present in the composite has a strong impact on the properties of supports, especially with regard to the mechanical strength. A composite of 85 wt.% Al2O3/15 wt.% TiO2 sintered at 1400 °C for 2 h exhibited both high permeability (pure water flux of 45 m3 m?2 h?1 bar?1), together with an excellent corrosive resistance towards hot NaOH and HNO3 solutions.  相似文献   

18.
Nb2O5 and Nb–Co doped 0.85BaTiO3–0.15Bi(Mg1/2Ti1/2)O3 (0.85BT–0.15BMT) ceramics were investigated. From XRD patterns, undesired phase was observed when the (Nb2O5/Nb-Co) doping levels exceed 3 wt.%/2 wt.%, giving rise to the deteriorate dielectric constant. The 0.85BT–0.15BMT ceramics doped with 2 wt.%Nb2O5 was found to possess a moderate dielectric constant (?  1000) and low dielectric loss (tan δ = 0.9%) at room temperature and 1 kHz, showing flat dielectric behavior over the temperature range from ?55 to 155 °C. It was found that the formation of core–shell structure in the BT based ceramics is controlled by the doping sequence of Nb- and Bi-oxides.  相似文献   

19.
《Ceramics International》2016,42(16):18333-18337
The effect of CuO/MnO additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 3ZrO2-3TiO2-ZnNb2O6 (3Z-3T-ZN) ceramics prepared by conventional solid-state route were systematically investigated. CuO/MnO doped ceramics exhibited a main phase of α-PbO2-structured ZrTi2O6 and a secondary phase of rutile TiO2. SEM results showed that the grain size of MnO doped ceramics became larger with increasing amount of dopants. The presence of CuO/MnO additives effectively reduced the sintering temperature of 3Z-3T-ZN ceramics to 1220 °C. MnO doped into ceramics could enhance the Q×f values significantly. The 0.5 wt% CuO doped 3Z-3T-ZN ceramics with 0.5 wt% of MnO, sintered at 1220 °C for 4 h, was measured to show superior microwave dielectric properties, with an εr of 41.02, a Q×f value of 44,230 GHz (at 5.2 GHz), and τf value of +2.32 ppm/°C.  相似文献   

20.
Yb2O3 stabilized ZrO2 (YbSZ) doped with different TiO2 contents were produced, and their phase structure, thermal conductivities and thermal expansion coefficients were investigated. A new solid-solution model is proposed, i.e. Ti4+ would take the interstitial sites when its content is below a critical value (≤2.5 mol%) and then substitute for Zr4+. The abnormal lattice volume and thermo-physical properties of 2.5 mol% TiO2 doped YbSZ, and the positive effects of TiO2 doping on the thermal conductivity at moderate doping level are consistent with the new defect model. However, monoclinic phase is formed when the TiO2 content reaches to 10 mol% and its content increases with doping content, which have negative influence on the thermo-physical properties. Considering the comprehensive properties, 10 mol% TiO2 doped YbSZ is considered as a promising thermal barrier coating ceramic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号