首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
运用数值模拟的手段,从流动特性和冷却特性两方面评价了各种开槽气膜冷却孔结构的优劣。从流动的机理揭示了在相同的槽深下,不同的横槽结构对改善气膜冷却效率和流量系数的影响,并比较了在气膜孔出口和入口均开有横槽后对流动和冷却特性的影响。结果表明:开横槽后,气膜孔出口下游的冷却效率得到不同程度的改善,吹风比越大,改善的程度越明显。在横槽下游5D-10D的范围内,冷却效率的改善程度最大;在气膜孔出入口处均开有斜横槽的结构和用圆角过渡气膜孔入口处的横槽均是提高气膜冷却效率和减小气膜孔流动阻力的有效措施,而在气膜孔出口处的横槽用圆角过渡则不利于改善气膜冷却效果。  相似文献   

2.
后台阶三维缝隙冷却效率的数值模拟   总被引:1,自引:0,他引:1  
针对涡轮叶片尾缘冷却结构特点,建立了后台阶三维缝隙结构气膜冷却特性计算模型,计算了冷却效率在出口壁面的分布,研究了不同雷诺数(5 000~15 000)与吹风比(0.5~2.0)影响,计算结果表明:在缝后壁面冷却效率是单调递减的,而肋后冷却效率是先增大后减少的分布规律;二次流出口壁面冷却效率受吹风比影响较大,冷却效率随吹风比增大而减小;壁面缝后冷却效率受雷诺数的影响较小。  相似文献   

3.
As one of the most important developments in air cooling technology for hot parts of the aero-engine,film cooling technology has been widely used.Film cooling hole structure exists mainly in areas that have high temperature,uneven cooling effectiveness issues when in actual use.The first stage turbine vanes of the aero-engine consume the largest portion of cooling air,thereby the research on reducing the amount of cooling air has the greatest potential.A new stepped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially.Through numerical methods,the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched.This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions,then the most reasonable and scientific structure parameter can be obtained by analyzing the results.The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio.Under this condition,the vane achieved the best cooling result and the highest cooling effectiveness,and also retained a low pressure loss.  相似文献   

4.
This paper investigated the combustion instability of spanwise positions in a hydrogen fueled scramjet combustor with a cavity flame holder. High-speed OH-PLIF technique was performed on a direct-connect supersonic combustion facility, and dynamic mode decomposition (DMD) as postprocessing. Combustion instability was investigated by characterizing the dominant frequencies and growth factors. By changing the equivalence ratio of hydrogen, the peak frequencies of scramjet mode and ramjet mode were obtained. Scramjet mode tended to have small oscillation at 150–200 Hz reflected by negative growth factors due to the stable flame structure. At ram-to-scram transition, oscillations at 80–120 Hz were remarkably enhanced due to the positive growth factors. In ramjet mode, the large differences of frequency characteristics in spanwise positions were observed. The dominant DMD modes near the cavity wall appeared to have negative growth factors leading to a stable flame with small oscillations. Besides, the characteristics of frequency-shift were affected by the positions of injector.  相似文献   

5.
This study was performed to investigate the effects of cylindrical and row trenched cooling holes with alignment angle of 0° and 90° at different blowing ratios on the film-cooling performance adjacent the endwall surface of a combustor simulator. The film-cooling blowing ratios varied from 1.25 to 3.18. In this study, a three-dimensional representation of a Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2.26. The analysis has been carried out with Reynolds-averaged Navier–Stokes turbulence model on internal cooling passages. This combustor simulator was combined with the interaction of two rows of dilution jets, which were staggered in the streamwise direction and aligned in the spanwise direction. Film cooling was placed along the combustor liner walls. In comparison with the baseline case of cooling holes, the application of row trenched hole near the endwall surface doubled the performance of film-cooling effectiveness.  相似文献   

6.
A novel idea for micro film cooling experiment is proposed and conducted. Both fabrication of a micro film-cooled device and evaluation of its performance are presented. The film cooling device is placed in a wind tunnel system for evaluation with the blowing parameter (M) ranging from 1 to 12.5 and the film jet slot heights of 25 μm, 45 μm and 50 μm, respectively. The micro film cooling performance obtained is found much higher, and the amount of cooling air used is much less, approximately two or three order magnitude lower, than that in the large-scale film cooling system. This means much saving of power consumption and more engine efficiency.  相似文献   

7.
This paper is focused on the film cooling performance of combustor-turbine leakage flow at off-design condition. The influence of incidence angle on film cooling effectiveness on first-stage vane endwall with combustor-turbine interface slot is studied. A baseline slot configuration is tested in a low speed four-blade cascade comprising a large-scale model of the GE-E3Nozzle Guide Vane (NGV). The slot has a forward expansion angle of 30 deg. to the endwall surface. The Reynolds number based on the axial chord and inlet velocity of the free-stream flow is 3.5 × 105 and the testing is done in a four-blade cascade with low Mach number condition (0.1 at the inlet). The blowing ratio of the coolant through the interface gap varies from M = 0.1 to M = 0.3, while the blowing ratio varies from M = 0.7 to M = 1.3 for the endwall film cooling holes. The film-cooling effectiveness distributions are obtained using the pressure sensitive paint (PSP) technique. The results show that with an increasing blowing ratio the film-cooling effectiveness increases on the endwall. As the incidence angle varies from i = +10 deg. to i = ?10 deg., at low blowing ratio, the averaged film-cooling effectiveness changes slightly near the leading edge suction side area. The case of i = +10 deg. has better film-cooling performance at the downstream part of this region where the axial chord is between 0.15 and 0.25. However, the disadvantage of positive incidence appears when the blowing ratio increases, especially at the upstream part of near suction side region where the axial chord is between 0 and 0.15. On the main passage endwall surface, as the incidence angle changes from i = +10 deg. to i = ?10 deg., the averaged film-cooling effectiveness changes slightly and the negative incidence appears to be more effective for the downstream part film cooling of the endwall surface where the axial chord is between 0.6 and 0.8.  相似文献   

8.
In the present paper, a numerical investigation is conducted on film cooling performance from novel sister-shaped single-hole schemes. Based on the sister hole film cooling technique, shaped holes are formed by merging discrete sister holes to a primary hole. Simulations are performed at four blowing ratios of 0.25, 0.5, 1, and 1.5. The novel-shaped holes resulted in a significant reduction in the jet liftoff effect in comparison with a cylindrical and a forward-diffused shaped hole. Moreover, film cooling effectiveness is notably increased at the high blowing ratios of 1 and 1.5.  相似文献   

9.
黄逸  徐强  戴韧  卓文涛  李莹 《动力工程》2012,32(5):362-367
为研究燃气轮机叶片表面曲率对气膜冷却性能的影响,对二维斜缝曲面模型(凹面、凸面和平板)进行了数值模拟,选取冷却流体射流入射角35°、主射流密度比1.5,采用RNGk-ε湍流模型计算得到不同吹风比(0.5、1.2和2.0)下斜缝气膜冷却曲面模型壁面的传热系数.结果表明:低吹风比(M=0.5)时,壁面压力梯度越大,传热系数越小;中吹风比(M=1.2)时,射流对主流扰动加剧,传热加强,凹面总体传热系数比凸面小;高吹风比(M=2.0)时,曲率对传热系数的影响减弱,传热系数差异不大.  相似文献   

10.
At present, the critical issue related to design of scramjet engine is to achieve efficient mixing between the air and fuel. Among the several fuel injection strategies, cavity flame holder is identified as a well-organized method for supporting the ignition zone. In this review, some mixing enhancement approaches based on well-known cavity based injection scheme proposed in latest research works, are summarized in detailed. The influence of cavity on the performance of scramjet combustor is recapitulated from three aspects, namely variation of shape/geometry of cavity flame holder; location of fuel/air injection scheme; and recent progresses in dual/double cavity. This review reveals that the cavity rear wall-expansion is an innovative kind of cavity flame holder which has a great impact on the efficiency of scramjet combustor whereas the presence of micro air jets have improved the flame holding mechanism of scramjet engine. Additionally, the performance of scramjet is significantly improved by dual cavity indicating that the dual cavity flame holder would be a feasible preference for the future growth of scramjet engine.  相似文献   

11.
A parametric study of combustor inlet configuration for supersonic combustion ramjet (Scramjet) engine has been conducted by solving two-dimensional full Navier–Stokes equations. The main stream is air of Mach 5 entering through the configured inlet of the combustor and gaseous hydrogen is injected from the configured jet on the side wall. The parameters included are air stream angle and injection angle. On the effect of air stream angle, strong interaction between main and injecting flows can be observed for smaller angle causing sharp increase in mixing efficiency on the top of injector. Also high momentum of air stream towards the side wall causes no recirculation at the upstream of injector and the system becomes unable for flame holding. For the variation of injection angle, results show that in upstream of injector the mixing is dominated by recirculation and in downstream the mixing is dominated by mass concentration of hydrogen. Upstream recirculation is dominant for injecting angle 60° and 90°. Incorporating the various effects, perpendicular injection shows the maximum mixing efficiency and its large upstream recirculation region has a good flame holding capability.  相似文献   

12.
Three different kinds of coolant chamber configuration for film cooling are proposed to develop the swirling coolant flow at blowing ratios ranging from 0.5 to 2.0. The results show that the difference of film cooling effectiveness for three kinds of coolant chamber configuration is little at low blowing ratio, but the advantage of swirling film cooling becomes obviously with the increase of blowing ratio. When the blowing ratio is 2.0, the jet momentum of original coolant chamber configuration is large and uniform, which leads to the lowest cooling effectiveness due to the formation of a strong kidney vortex. The first coolant chamber configuration has a low jet momentum region at upstream of the film hole, the coolant in this region interacts with high temperature mainstream and bypasses the large jet momentum coolant to attach cooling surface at downstream. The second coolant chamber configuration is sprayed with the structure of unidirectional vortex, which forms a vortex pressing on other vortex, making the coolant in pressed vortex attach surface better, producing the best coverage and the higher film cooling effectiveness.  相似文献   

13.
Effect of rotation on detailed film cooling effectiveness distributions in the leading edge region of a gas turbine blade with three showerhead rows of radial-angle holes were measured using the Pressure Sensitive Paint (PSP) technique. Tests were conducted on the first-stage rotor blade of a three-stage axial turbine at three rotational speeds. The effect of the blowing ratio was also studied. The Reynolds number based on the axial chord length and the exit velocity was 200,000 and the total to exit pressure ratio was 1.12 for the first-stage rotor blade. The corresponding rotor blade inlet and exit Mach number was 0.1 and 0.3, respectively. The film cooling effectiveness distributions were presented along with the discussions on the influences of rotational speed, blowing ratio, and vortices around the leading edge region. Results showed that different rotation speeds significantly change the film cooling traces with the average film cooling effectiveness in the leading edge region increasing with blowing ratio.  相似文献   

14.
15.
Experimental investigations were conducted to study the film cooling performance in a low speed annular cascades using Thermochromic Liquid Crystal (TLC) technique. The test blade was placed in the second stage, where 18 blades were installed with chord length of 124.3 mm and height of 99 mm. A film hole with diameter of 4 mm, angled 28° to the tangential of the pressure surface in streamwise, was set in the middle span of the blade. The Reynolds number based on the outlet mainstream velocity and the blade ...  相似文献   

16.
A fast vortex method is presented for the simulation of fluid flows inside two-dimensional channels. The first channel studied is formed by two parallel walls simulating the entrance length of a developing flow. The second channel is similar to the first one but with an injection of a secondary fluid through a slot on one of its walls. In both cases, results are presented for flows at low Reynolds numbers and for flows at a high Reynolds number. The numerical method used is based on the Random Vortex Method and on the Vortex-In-Cell algorithm. Physical analyses of the numerical results are also presented, mostly in application to film cooling.  相似文献   

17.
采用三维数值模拟方法,研究了GE E3发动机第一级透平动叶叶顶间隙内的气膜流动与换热特性,评估了气膜吹风比M分别为0.5、1.0和1.5时,对叶顶换热系数以及冷却效率的影响.计算结果表明:叶顶气膜冷却空气改变了叶顶泄漏流动特性,随着吹风比的增加,叶顶间隙内的泄漏流动区域不断缩小,从而导致叶顶间隙泄漏量不断减小;随着气膜冷却吹风比的增大,叶顶平均换热系数逐步降低;在M=1时,冷却效果最佳.  相似文献   

18.
Ramjet flows are very sensitive to combustion instabilities that are difficult to predict using numerical simulations. This paper describes compressible large eddy simulation on unstructured grids used to investigate nonreacting and reacting flows in a simplified twin-inlet ramjet combustor. The reacting flow is compared to experimental results published by ONERA in terms of mean fields. Simulations show a specific flow topology controlled by the impingement of the two air jets issuing from the twin air inlets and by multiple complex recirculation zones. In a second part, all unsteady modes appearing in the reacting LES are analyzed using spectral maps and POD (proper orthogonal decomposition) tools. A Helmholtz solver also computes the frequencies and structures of all acoustic modes in the ramjet. Pure longitudinal, transverse and combined modes are identified by all three diagnostics. In addition, a mode-by-mode analysis of the Rayleigh criterion is presented thanks to POD. This method shows that the most intense structure (at 3750 Hz) is the first transverse acoustic mode of the combustor chamber and the Rayleigh criterion obtained with POD illustrates how this transverse mode couples with unsteady combustion.  相似文献   

19.
An experimental investigation on cooling performances of integrally impingement/effusion cooling configurations with film cooling holes angled normal to the mainstream flow is conducted. The adiabatic film cooling effectiveness and the overall cooling effectiveness are measured on a polycarbonate test plate and a stainless steel plate respectively. Effects of the blowing ratio (ranged from 0.6 to 2.4), multi-hole arrangement (inline and staggered), hole-to-hole pitch ratio (ranged from 3 to 5) and jet-to-target spacing ratio (ranged from 2 to 4) on the cooling performance are examined. In addition, jet impingement heat transfer is measured to evaluate the dense array jet impingement behaviors with local extraction of coolant via effusion holes. A new parameter named corrected blowing ratio is introduced in the present to evaluate the cooling effectiveness for different effusion or impingement–effusion configurations under a given quantity of cooling air. In an integrally impingement–effusion cooling configuration, multiple jet impingement with local extraction of coolant via effusion holes is able to produce higher overall heat transfer under lower jet-to-target spacing and denser jet array. The action of additional jet impingement heat transfer on improving overall cooling performance is highly dependant on the blowing ratio, multi-hole arrangement and jet-to-target spacing, which seem to be behaved superior in the situations where the film cooling effect isolating the wall surface from the hot mainstream is weak. For an integrally impingement–effusion cooling configuration, the densest hole-to-hole array is favorable in the situations where the coolant mass flow rate per unit area of cooled surface is low. As the coolant mass flow rate per unit area of cooled surface increases, the hole-to-hole pitches could be gradually enlarged to make effective utilization of array jet impingement.  相似文献   

20.
ABSTRACT

This article presents a study of cooling performance of combustor liner of a gas turbine, using a flat plate model. The combustion process in gas turbine engines liberates very high temperature gases, which impacts the properties of the combustor liner. Hence, cooling of liner is important and is carried out by effusion cooling method. Experiments are carried out over a flat plate with staggered effusion holes. The hot mainstream air flows at a Reynolds number of 2.325 × 105, which indicates a turbulent flow. The coolant to mainstream density ratios of 1.3 and 1.5 is maintained by varying the blowing ratios ranging from 0.5 to 2.5. Test plate surface temperature measurements are recorded by an infrared camera and the overall cooling effectiveness in the flow direction is calculated. Numerical validation for conjugate heat transfer analysis is performed using ANSYS workbench and the temperature contours obtained are compared with infrared camera images. MATLAB program is used to obtain the effectiveness contours for experimental and computational fluid dynamics results. The effectiveness contours are found to be similar, showing the increase in effectiveness with the increase in blowing ratios. Density ratios comparison shows that with the increase in density ratio, the overall cooling effectiveness marginally decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号