首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PbZr0.53Ti0.47O3 (PZT) thin films with thickness of 0.9 μm were prepared on La0.5Sr0.5CoO3 (LSCO) coated Si substrates. Both PZT and LSCO were prepared by the sol–gel method. The concentration of LSCO sol was varied from 0.3 to 0.1 mol/L, which could modify the preferential orientation of PZT thin films and consequently affect the dielectric and ferroelectric properties. The LSCO electrode layers derived from lower sol concentration of 0.1 mol/L have much more densified structure, which facilitates the formation of (1 0 0) textured PZT films with smooth and compact columnar grains. PZT thin films prepared on the optimized LSCO films exhibit the enhanced dielectric constant and remnant polarization of 980 and 20 μC/cm2, respectively.  相似文献   

2.
This paper describes the deposition of PZT/lanthanum nickel oxide (LNO) electrode thin-film capacitor on a Si(1 0 0) substrate with a chemical solution deposition (CSD). Highly (1 0 0)-oriented LNO film with a perovskite structure was deposited by annealing at 700 °C from a precursor solution of La(NO3)3 and Ni(CH3COO)2. In addition, highly (1 0 0)&(0 0 1)-oriented PZT/LNO capacitor was deposited on LNO/Si substrate by annealing at 600 °C, showing Pr = 18 μC/cm2 and Ec = 36 kV/cm. Furthermore, the resultant PZT/LNO thin-film capacitor exhibited no fatigue up to 108 switching cycles.  相似文献   

3.
The bottom electrode crystallization (BEC) method was applied to the crystallization of PZT thin films deposited by laser ablation over Si/SiO2/Ti(Zr)/Pt structures, with the platinum films being deposited at two different temperatures. The results were compared with those obtained by rapid annealing with halogen lamps and furnace annealing. PZT films crystallized over Pt made at lower temperature with Ti adhesion layers tend to have a (1 1 1) preferential orientation, while those deposited on platinum made at higher temperature tend to have a (1 0 0)/(1 1 1) mixed orientation. When Zr adhesion layers are used, the PZT films crystallized over Pt have a preferential (1 0 0) orientation, except for films deposited over Pt made at 500 °C and crystallized with a high heating rate. The ferroelectric properties of the films crystallized with the BEC method are good, being similar to those obtained with the other crystallization methods using the same parameters.  相似文献   

4.
《Ceramics International》2015,41(6):7325-7328
Micro-pattern of 8.2-μm-thick PZT films was prepared on Pt/Ti/SiO2/Si (1 0 0) substrate wafer by combining composite sol–gel and a novel lift-off using ZnO as a sacrificial layer. The processes include ZnO sacrificial layer deposition and patterning, PZT film preparation, and final lift-off. The results reveal the micro-pattern was better than that formed by wet etching, the PZT thick films patterned by lift-off possessed similar dielectric characters, better ferroelectric properties, and higher breakdown voltage than those of films patterned by wet etching. The lift-off is suitable for micro-patterning of PZT thick films.  相似文献   

5.
In this work, the influence of annealing temperature on the ferroelectric electron emission behaviors of 1.3-μm-thick sol–gel PbZr0.52Ti0.48O3 (PZT) thin film emitters was investigated. The results revealed that the PZT films were crack-free in perovskite structure with columnar-like grains. Increasing annealing temperature led to the growth of the grains with improved ferroelectric and dielectric properties. The remnant polarization increased slightly from 35.3 to 39.6 μC/cm2 and the coercive field decreased from the 56.4 to 54.6 kV/cm with increasing annealing temperature from 600 to 700 °C. The PZT film emitters exhibited remarkable ferroelectric electron emission behaviors at the threshold voltage above 95 V. The film annealed at 700 °C showed a relatively lower threshold voltage and higher emission current, which is related to the improved ferroelectric and dielectric properties at higher annealing temperature. The highest emission current achieved in this work was around 25 mA at the trigger voltage of 160 V.  相似文献   

6.
《Ceramics International》2016,42(16):18238-18246
0.5((1−x)Bi0.8La0.1Pr0.2FeO3 (BLPFO)-xPb(Zr0.52Ti0.48)O3 (PZT))-0.5Polyvinylidene difluoride (PVDF) composite films with x variations 0.25, 0.40 and 0.50 were synthesized using two step mixing, followed by hot pressing. The structural, microstructural, dielectric, magnetic, ferroelectric and magnetodielectric properties of composite films have been systematically investigated. The measurement of the dielectric properties at 1 kHz shows that the dielectric loss (tan δ) decreases with increasing the volume fraction of PZT. The value of maximum room temperature εr ~78 and low tan δ ~0.061 for 0.5((1−x)BLPFO-xPZT)-0.5PVDF composite film with x=0.50 suggests its usefulness for capacitor applications. For predictions of effective dielectric constant of composite films experimental data were fitted with Lichtenecker model. Among all the composite films, the film with x=0.50 was found to exhibit smallest leakage current density ~7×10−8 A/cm2 and hence improved electrical resistivity. The variation of magnetization with temperature indicates the presence of spin glass behavior along with the ferromagnetic component at 5 K. The value of remnant polarization (2Pr) is found to increase with increase of PZT content in composite films. In the present composite films a significant dependence of dielectric constant on magnetic field has been observed, and highest value of magnetodielectric response of 2.85% is observed for composite film with x=0.50.  相似文献   

7.
Lead zirconate titanate (PZT) ceramic was mixed with Portland cement (PC) to form 1–3 connectivity PZT–PC composite using a dice-and-fill technique. Ferroelectric hysteresis behavior and dielectric properties of these composites were investigated using PZT volume content of 60%, 70% and 80%. The results showed that the dielectric constant of the composite materials increased with PZT content and the dielectric constant (?r) value is 781 for 80% PZT composite at 1 kHz. The dielectric loss tangent (tan δ) was found to decrease with increasing PZT content and the tan δ value of 80% PZT composite is 0.06. Parallel and series models were also compared to the dielectric measurement results. For the hysteresis measurements, the ferroelectric hysteresis loops can be seen for all composites. The “instantaneous” remnant polarization (Pir) was found to increase with increasing PZT content from 3.20 to 4.28 μC/cm2 at 90 Hz when PZT volume content used was 60% and 80% respectively.  相似文献   

8.
《Ceramics International》2016,42(8):9762-9768
In this paper, SrTiO3/LaNiO3 (STO/LNO) bilayer films were prepared on lanthanum aluminate (LAO) substrates by use of the sol–gel technique. An array of LNO electrodes with diameters of 200 μm was prepared on the surface of STO/LNO bilayer films. Therefore, LaNiO3/SrTiO3/LaNiO3 (LNO/STO/LNO), a capacitor structure with symmetrical top and bottom electrodes, was obtained. The XRD analysis showed that the obtained capacitor structure has a biaxial texture. The dielectric test suggested that the relative dielectric constant of the LNO/STO/LNO structure is symmetric, has a high tunability, and has a low dielectric dissipation factor (tan δ) in response to varying electric field bias. As the temperature decreased, the relative dielectric constant of the STO film increased, the tunability increased, and the tan δ decreased. At test conditions of 80 K and 100 kH, the tunability and the figure of merit (FOM) reached 56% and 107, respectively.  相似文献   

9.
0.95Pb(Sc0.5Ta0.5)O3–0.05%PbTiO3 (PSTT5) thin films with and without a Pb(Zr0.52,Ti0.48)O3 (PZT52/48) seed layer were deposited on Pt/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering. X-ray diffraction patterns indicate that the PSTT5 film with a PZT52/48 seed layer exhibited nearly pure perovskite crystalline phase with highly (4 0 0)-preferred orientation. Piezoresponse force microscopy observations reveal that a large out-of-plane spontaneous polarization exists in the highly (4 0 0)-oriented PSTT5 thin film. The PSTT5/PZT(52/48) possesses good ferroelectric properties with large remnant polarization Pr (12 μC/cm2) and low coercive field Ec (110 kV/cm). Moreover, The perfect butterfly-shaped capacitance–voltage characteristic curve and the relative dielectric constant as high as 733 is obtained in this PSTT5 thin film at 100 kHz.  相似文献   

10.
《Ceramics International》2016,42(12):13925-13931
SrRuO3 (SRO) thin films were grown on SiO2/Si substrates with different thickness of LaNiO3 (LNO) seed layers by RF magnetron sputtering. Effects of LNO thickness on the grain orientation, surface morphology, magnetic behavior and electrical transport properties of SRO films were investigated. The orientation of SRO films transformed from (110)pc to (001)pc and the residual stress was released gradually with increasing the thickness (pc refers to the pseudo-cubic unit cell of SrRuO3). SRO films with higher orientation grown on LNO exhibited more flat surface, higher saturation magnetization, and lower coercive field. The magnetic anisotropy was enhanced on thicker LNO due to the different states of residual stress. In addition, the temperature dependence of resistivity was promoted by the microstructural disorder. (110)pc-oriented SRO monolayer electrode and (001)pc-oriented SRO/LNO300 bilayer electrode own low room temperature sheet resistance of 0.38 Ω/□ and 0.26 Ω/□, respectively. The results indicate that the controllable SRO films can be used as not only good bottom electrodes but also promising templates to control the crystallographic orientations of various other perovskite-based functional materials.  相似文献   

11.
The 0.6[0.94Pb(Zn1/3Nb2/3)O3 + 0.06BaTiO3] + 0.4[0.48(PbZrO3) + 0.52(PbTiO3)], PBZNZT, thin films were synthesized by pulsed laser deposition (PLD) process. The PBZNZT films possess higher insulating characteristics than the PZT (or PLZT) series materials due to the suppressed formation of defects, therefore, thin-film forms of these materials are expected to exhibit superior ferroelectric properties as compared with the PZT (or PLZT)-series thin films. Moreover, the Ba(Mg1/3Ta2/3)O3 thin film of perovskite structure was used as buffer layer to reduce the substrate temperature necessary for growing the perovskite phase PBZNZT thin films. The PBZNZT thin films of good ferroelectric and dielectric properties (remanent polarization Pr = 26.0 μC/cm2, coercive field Ec = 399 kV/cm, dielectric constant K = 737) were achieved by PLD at 400 °C. Such a low substrate temperature technique makes this process compatible with silicon device process. Moreover, thus obtained PBZNZT thin films also possess good optical properties (about 75% transmittance at 800 nm). These results imply that PBZNZT thin films have potential in photonic device applications.  相似文献   

12.
《Ceramics International》2016,42(16):18431-18435
Sub-5 µm pattern of sol-gel derived lead-zirconium-titanate (PZT) film with a thickness of 80–390 nm was successfully prepared on Pt(111)/TiOx/SiO2/Si (100) substrate by a novel lift-off process using solution-processed metal oxides as a sacrificial layer. The process is simply divided into three steps: In-Zn-O (IZO) sacrificial layer spin-coating and patterning, PZT film formation followed by lift-off process. The results suggested that the IZO layer is effective in preventing PZT crystallization because of its thermal stability during PZT post-annealing, and its barrier-effects between the spin-coated PZT precursor and the Pt/TiOx substrate. Consequently, the micro-pattern of lift-off PZT exhibited better properties than that formed by wet-etching. In particular, the lift-off PZT films possessed better ferroelectric properties, higher break-down voltage, and more well-defined shape than those of films patterned by conventional wet-etching. This lift-off process shows great promise for highly integrated devices due to its fine pattern-ability.  相似文献   

13.
Bi0.85La0.15FeO3 (BLFO015) thin films were deposited by the polymeric precursor solution on La0.5Sr0.5CoO3 substrates. For comparison, the films were also deposited on Pt bottom electrode. X-ray diffraction data confirmed the substitutions of La into the Bi site with the elimination of all secondary phases under a substitution ratio x = 15% at a temperature of 500 °C for 2 h. A substantial increase in the remnant polarization (Pr) with La0.5Sr0.5CoO3 bottom electrode (Pr  34 μC/cm2) after a drive voltage of 9 V was observed when compared with the same film deposited on Pt substrate. The leakage current behavior at room temperature decreased from 10?8 (Pt) to 10?10 A/cm2 on (La0.5Sr0.5CoO3) electrode under a voltage of 5 V. The fatigue resistance of the Au/BLFO015/LSCO/Pt/TiO2/SiO2/Si (1 0 0) capacitors with a thickness of 280 nm exhibited no degradation after 1 × 108 switching cycles at a frequency of 1 MHz.  相似文献   

14.
It has been recognized that the interdiffusion of atomic species between a PZT film and the Pt bottom electrode leads to the gradual degradation of a PZT capacitor. In order to prevent this interdiffusion, experimental studies on chemical passivation to the bottom electrode surface were carried out by the sulfurization method. It was observed that a sulfur layer was built up on the Pt substrate with small grains, which resulted in a structural change at the Pt surface. Atomic force microscopy (AFM) showed that the film roughness of the Pt surface was increased by sulfur treatment. Pb(Zr0.5Ti0.5)O3(PZT) thin films were prepared on a Pt/Ti/SiO2Si bottom electrode by spin-coating techniques. The microstructure and the preferred orientation of the PZT films were shown to depend on the sulfur-treated electrode. The PZT capacitor on a clean Pt electrode was confirmed to be ferroelectric with Pr=17.7 μC/cm2 and Ec=65 kV/cm from the P-E hysteresis curves. The fatigue behavior of a PZT film capacitor prepared on a sulfur-treated one was observed to be relaxed, but the absolute value of Pr was paid off.  相似文献   

15.
Pulsed excimer laser irradiation through a UV-transparent fabrication substrate has been successfully employed to separate PZT thick films from their sapphire host substrates. Films of 20 μm in thickness were prepared by a hybrid particle sol–gel synthesis route. The microstructure, morphology and ferroelectric properties of the thick films after laser-transfer have been examined. Films were irradiated with a 248 nm, 15 ns pulse, and transferred to a platinised silicon substrate (Pt/Ti/SiO2/Si). A laser fluence of 250 mJ/cm2 was sufficient to delaminate the original PZT/sapphire interface. The pulsed energy density used here is lower than reported by other groups utilising a laser-transfer process for PZT. This is believed to be due to higher levels of porosity at the film/substrate interface in this study.  相似文献   

16.
LNO (LaNiO3) thin films were directly deposited onto Si substrates with a thin layer of amorphous natural oxide (SiO2) using three different precursor solutions. Effects of the constitution of precursor solution and the annealing heating rate on the surface morphology and the orientation were investigated. The LNO film derived from the mixture of a methanol solvent and an acetylacetone chelating agent had the flat surface with no cracks and pinholes. The heating rate of rapid annealing process had a critical effect on the oriented growth of the LNO film, and its c-axis orientation degree increased with the annealing heating rate. The LNO film with the heating rate of 40 ℃/s exhibited the highest degree of c-axis orientation (99.57%) and the lowest resistivity (9.35 × 10?4 Ω cm). It would be a potential bottom electrode and/or seed layer to integrate perovskite-type films on it for functional devices.  相似文献   

17.
This paper describes the orientation control and the electrical properties of the chemical solution deposition (CSD) derived LaNiO3 (LNO) thin film. The LNO precursor solutions were prepared using lanthanum nitrate and nickel acetate as La and Ni source, and ethanol or 2-methoxyethanol and 2-aminoethanol mixed solution as solvents. The LNO films were spin-coated using these precursor solutions and annealed at the temperature from 500 to 700 °C. The resulting LNO film annealed at 700 °C derived from 2-methoxyethanol and 2-aminoethanol mixed solvent exhibited (1 0 0)-orientation, with some surface cracks and pores, and relatively higher resistivity of 2.49 × 10−3 Ω cm. The LNO film derived from 2-methoxyethanol and 2-aminoethanol mixed solvent annealed at 700 °C in an oxygen atmosphere showed highly (1 0 0)-orientation, with higher density, a few cracks and pores, and exhibited a good electrical resistivity of 7.27 × 10−4 Ω cm.  相似文献   

18.
《Ceramics International》2015,41(4):5984-5991
The application of the La2NiO4+δ (LNO), one of the Ruddlesden–Popper series materials, as a cathode material for intermediate temperature solid oxide fuel cells is investigated in detail. LNO is synthesized via a complex method using ethylenediaminetetraacetic acid (EDTA) and citric acid. The effect of the calcination temperature of the LNO powder and the sintering temperature of the LNO cathode layer on the anode-supported cell, Ni–YSZ/YSZ/GDC/LNO, is characterized in view of the charge transfer resistance and the mass transfer resistance. Charge transfer resistance was not significantly affected by calcination and sintering temperature when the sintering temperature was not lower than the calcination temperature. Mass transfer resistance was primarily governed by the sintering temperature. The unit cell with the LNO cathode sintered at 1100 °C with 900 °C-calcined powder presented the lowest polarization resistance for all the measured temperatures and exhibited the highest fuel cell performances, with values of 1.25, 0.815, 0.485, and 0.263 W cm−2 for temperatures of 800, 750, 700, and 650 °C, respectively.  相似文献   

19.
Compositionally graded Pb(Zr,Ti)O3 thin films were prepared on the Pt(1 1 1)/Ti/SiO2/Si, LNO/Si(1 0 0) and LNO/Pt(1 1 1)/Ti/SiO2/Si substrates by a modified sol–gel method and rapid heat-treatment. The composition depth profile of a typical up-graded film was determined using a combination of auger electron spectroscopy and Ar-ion etching. The crystallographic orientation and the microstructure of the resulting graded PZT thin films on the different substrates were characterized by XRD. The dielectric and ferroelectric properties of the graded PZT films were discussed. The graded PZT films on LNO/Pt/Ti/SiO2/Si and LNO/Si(1 0 0) substrates have larger dielectric constant and remnant polarizations compared to that grown on Pt/Ti/SiO2/Si substrates.  相似文献   

20.
《Ceramics International》2016,42(16):18402-18410
In this study, we investigated the effect of excess lead on the structural and electrical characteristics of lead zirconate titanate [Pb(ZrxTi1−x)O3, PZT] thin films using the sol-gel spin coating method. X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and field-emission transmission electron microscopy were used to study the structural, morphological, chemical, and microstructural features, respectively, of these films as functions of the growth conditions (excess lead concentrations of 10, 20, and 25 mol%). The PZT thin film prepared at the 20 mol% condition exhibited the best electrical characteristics including a lower leakage current of 6×10−7 A/cm2 at an electric field of 50 kV/cm, a larger capacitance value of 1.92 μF/cm2 at a frequency of 1 kHz, and a higher remanent polarization of 20.1 μC/cm2 at a frequency of 5 kHz. We attribute this behavior to the optimal amount of excess lead in this PZT film forming a perovskite structure and suppressing the reaction of PZT film with RuO2 electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号