首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted of the effect of additions of samarium oxide on the thermal expansion and thermal conductivity of zirconium oxide for thermal barrier coatings. SmxZr1?xO2?x/2 (0.1  x  0.5) ceramic powders synthesized with a chemical-coprecipitation and calcination method were sintered at 1873 K for 15 h. Structures of the synthesized powders and sintered ceramics were identified by X-ray diffractometer. The morphologies of ceramic powders were observed by transmission electron microscope. The thermal expansion coefficients and thermal diffusion coefficients of SmxZr1?xO2?x/2 ceramics were studied with a high-temperature dilatometer and a laser flash diffusivity technique from room temperature to 1673 K. The thermal conductivity was calculated from thermal diffusivity, density and specific heat of bulk ceramics. Sm0.1Zr0.9O1.95 ceramics consists of both monoclinic and tetragonal structures. However, Sm0.2Zr0.8O1.9 and Sm0.3Zr0.7O1.85 ceramics only exhibit a defect fluorite structure. Sm0.4Zr0.6O1.8 and Sm0.5Zr0.5O1.75 ceramics have a pyrochlore-type lattice. With the increase of Sm2O3 content, the linear thermal expansion of SmxZr1?xO2?x/2 ceramics increases except for Sm0.1Zr0.9O1.95. The thermal conductivities of SmxZr1?xO2?x/2 ceramics ranged from 1.41 at 873 K to 1.86 W m?1 K?1 at room temperature in a test temperature range of room temperature to 1673 K, and the results can be explained by phonon scattering mechanism.  相似文献   

2.
To increase operating temperature and improve performance of gas-turbine engines, it is urgently needed to develop new thermal barrier oxides with a lower thermal conductivity than 6–8 wt.% yttria-stabilized zirconia. (YbxSm1?x)2Zr2O7 (0  x  1.0) ceramics were synthesized by pressureless-sintered at 1700 °C for 10 h in air. The relative density, phase structure, morphology and thermal diffusivity coefficients of (YbxSm1?x)2Zr2O7 ceramics were investigated by the Archimedes method, X-ray diffraction, scanning electron microscopy and laser-flash method. Sm2Zr2O7 and (Yb0.1Sm0.9)2Zr2O7 ceramics exhibit a pyrochlore structure, while (YbxSm1?x)2Zr2O7 (0.3  x ≤1.0) ceramics have a defect fluorite-type structure. The thermal conductivities of (YbxSm1?x)2Zr2O7 ceramics first gradually decrease with increasing temperature, and then increase slightly above 800 °C due to the increased radiation contribution. YbSmZr2O7 ceramics have the lowest thermal conductivity over the entire temperature range, which is caused by the reduction of cation mean free path in ytterbium–samarium zirconate system.  相似文献   

3.
《Ceramics International》2016,42(13):14749-14753
Sm2(Zr1–xTix)2O7 (0≤x≤0.15) ceramics have been fabricated by pressureless-sintering method at 1973 K for 10 h in air. The influence of TiO2 doping on microstructure and thermo-optical properties of Sm2(Zr1–xTix)2O7 ceramics is investigated by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The partial substitution of Ti4+ for Zr4+ results in a significant increase in emissivity at low wavelengths contrasted with undoped Sm2Zr2O7. Sm2(Zr0.85Ti0.15)2O7 ceramic exhibits a high emissivity of above 0.70 at 1073 K in a wavelength range of 3–16 µm, where the highest value at this temperature is more than 0.90 especially in the wavelength range of 9–14 µm. FT-IR spectra and optical absorption spectra unveil the mechanisms of enhanced emissivity in Sm2(Zr1–xTix)2O7 (0.05≤x≤0.15) ceramics in the intermediate infrared range, especially at the wavelengths of 3–8 µm, due to Ti4+ ion substitution for Zr4+ ion.  相似文献   

4.
In the present work, lead-free (Ba1?xCax)(Zr0.04Ti0.96)O3 (x=0.00–0.09) ceramics were fabricated via a solid-state reaction method. The microstructure and electrical properties of the ceramics were investigated. The microstructure of the BCZT ceramics showed a core shell structure at compositions of x=0.03 and 0.06. The substitution of small amount of Ba2+ by Ca2+ resulted in an improvement of the piezoelectric, dielectric and ferroelectric properties of the ceramics. The orthorhombic–tetragonal phase transition was found in the composition of x≤0.03. Piezoelectric coefficient of d33~392 pC/N and lowest Ec~3.3 kV/cm with highest Pr~14.1 μC/cm2 were obtained for the composition of x=0.03 while its Curie temperature (TC) was as high as 125 °C. However, the ferroelectric to paraelectric transition temperature had slightly shifted towards room temperature with increasing Ca2+ concentration.  相似文献   

5.
Solid solution (SS) ceramics of the PZT (PbTixZr1?xO3, 0≤x≤1.0) system were studied in broad temperature (10≤T≤1000 K) and electric field frequency (10?2f≤107 Hz) ranges. Several groups of SS were distinguished, which differ by nonmonotonic behavior of dielectric parameters in the cryogenic temperature range and at Т>300 K, which results both from the defective state and from the polymorphism of SS. A conclusion is made on the expediency of use of the obtained data during the application of materials based on the PZT system in the broad range of external actions.  相似文献   

6.
A series of Zr1-xNd xO2-x/2 (0  x  1) ceramics was prepared by solid-state reaction method. The effects of Nd content on the phase evolution were investigated. The chemical durability of resulting waste forms was also examined. The results show that the ceramics with x < 0.1 show monoclinic and cubic zirconia phase, with 0.2  x < 0.4 exhibit a single cubic phase, with 0.4  x  0.6 exhibit a single pyrochlore phase, with 0.6 < x < 0.8 exhibit a single cubic phase and remain cubic phases and hexagonal Nd2O3 when 0.8  x  1. The unit cell parameters of the Nd-doped zirconia samples increase as the Nd content increases. Moreover, the normalized element release rates of Nd element in Nd-doped zirconia ceramics firstly decrease with leaching time and almost no change after 21 days (∼0−6 g m−2 d−1), demonstrating its good chemical durability.  相似文献   

7.
A rapid synthesis method is introduced for the synthesis of low thermal expansion materials of Ca1?xSrxZr4P6O24 (x = 0, 0.5 and 1) and optimum synthesizing conditions are obtained. It is shown that these materials can be synthesized by one-step sintering by putting the preheated mixture of CaCO3, SrCO3 and NH4H2PO4 directly into a pipe furnace at the sintering temperature (1673–1873 K). With this method, the sintering procedure is much simplified and sintering time and energy exhausts are considerably reduced with respect to the conventional solid state reactions which usually require multiple-step and longer time sintering at different temperatures with intermediate grindings for the synthesis of these materials. By putting the samples directly at the sintering temperature, the formation of the secondary phase ZrP2O7 can be largely avoided. This insures the rapid synthesis of Ca1?xSrxZr4P6O24. MgO is introduced to increase the density of Ca0.5Sr0.5Zr4P6O24 ceramics. A sintered density of 3.10 g cm?3, relative density of 96.2% for Ca0.5Sr0.5Zr4P6O24 is obtained with 1.0 wt.% MgO. The coefficients of thermal expansion are about 0.27 × 10?6 K?1. Raman spectroscopic and differential scanning calorimetry (DSC) analyses reveal that there are no phase transitions of all the samples from 113 K to 1423 K.  相似文献   

8.
B2O3 (25.0 mol%) was added to Zn2?xSiO4?x ceramics (0.0  x  0.5) to decrease the sintering temperature. Specimens with 0.0  x  0.3 sintered at 900 °C were well sintered with a high density due to the formation of a B2O3 or B2O3–SiO2 liquid phase. The Q × f value of the Zn2SiO4 ceramic was relatively low, 32,000 GHz, most likely due to the presence of a ZnO second phase. A maximum Q × f value of 70,000 GHz was obtained for the specimens with x = 0.2–0.3, and their ?r and τf values were approximately 6.0 and ?21.9 ppm/°C, respectively. Ag metal did not interact with the 25.0 mol% B2O3-added Zn1.8SiO3.8 ceramic, indicating that Zn2?xSiO4?x ceramics containing B2O3 are a good candidate materials for low temperature co-fired ceramic devices.  相似文献   

9.
(1?x)(Bi0.4871Na0.4871La0.0172TiO3)?x(BaZr0.05Ti0.95O3) ceramics (abbreviated (1?x)BNLT?xBZT) where 0.1≤x≤0.3 were fabricated by the combustion technique using glycine as fuel. BNLT and BZT powders were calcined at temperatures of 825 °C for 4 h and 925 °C for 6 h, respectively. After that they were mixed with the different compositions. It was found that the optimum sintering temperature of (1?x)BNLT?xBZT ceramic was obtained at 1125 °C for 2 h. This ceramic had the highest density. The structure of the (1?x)BNLT?xBZT ceramics exhibited the co-existence of tetragonal and rhombohedral phases with x≤0.1. The tetragonality increases with the increase of x content. The average grain size, the density and the Curie temperatures decrease with increasing x content. The maximum dielectric constant and the highest Pr were at about 4850 and 12.7 μC/cm2, respectively, and were obtained by the 0.85BNLT?0.15BZT sample.  相似文献   

10.
(1?x)Bi0.51(Na0.82K0.18)0.50TiO3xBa0.85Ca0.15Ti0.90Zr0.10O3 [(1?x)BNKT–xBCTZ] ceramics were prepared by the conventional solid-state method, and the effect of BCTZ content on their microstructure and electrical properties was investigated. A stable solid solution with a pure perovskite phase is formed between BNKT and BCTZ, and these ceramics have a coexistence of rhombohedral and tetragonal phases in the range of 0  x < 0.15. Their Tm and Td values are strongly independent on the BCTZ content. Moreover, the sintering temperature strongly affects the ferroelectric and piezoelectric properties of these ceramics with x = 0.02. These ceramics with x = 0.02 exhibit an optimum electrical behavior of d33  205, kp  0.25, Pr  31.8 μC/cm2, and Ec  19.1 kV/cm together with a high Td value of ~91 °C when sintered at 1180 °C and poled at an optimum condition. As a result, the (1?x)BNKT–xBCTZ ceramic is a promising candidate material for lead-free piezoelectric ceramics.  相似文献   

11.
The (Mg0.93Ca0.05Zn0.02)(Ti1?xZrx)O3 ceramics were prepared by conventional solid-state route. The dielectric properties and structure of (Mg0.93Ca0.05Zn0.02)(Ti1?xZrx)O3 ceramics were investigated. It has been found that MgTiO3 and CaTiO3 are the main phases and a second phase CaZrTi2O7 appeared in 95MCT ceramics co-doped with Zn–Zr. With Zn–Zr additive, the sintering temperature of 95MCT ceramics can be reduced to 1300 °C, and adjust the temperature coefficient of dielectric constant. With the increasing of Zr content, dielectric constant ?r decrease from 22.6 to 19.91 and the temperature coefficient of dielectric constant αc from 5.93 to 2.52 ppm/°C when x = 0.01, 0.02, 0.03 and 0.04 mol respectively. The 95MCT ceramics with x = 0.02 has a dielectric constant ?r of 22.02, a dielectric loss of 2.78 × 10?4 and a temperature coefficient of dielectric constant αc value of 2.98 ppm/°C.  相似文献   

12.
《应用陶瓷进展》2013,112(4):214-219
Abstract

Polycrystalline ceramic samples of magnesia doped GdSm1–xMgxZr2O7–x/2 have been prepared by conventional solid state reaction method using high purity oxides. The influence of magnesia dopant content on densification, microstructure and electrical properties of GdSm1–xMgxZr2O7–x/2 ceramics are investigated. Magnesia doping promotes the sintering densification behaviour of GdSm1–xMgxZr2O7–x/2 ceramics. GdSm1–xMgxZr2O7–x/2 (x?=?0, 0·05, 0·10) ceramics have a single phase of the pyrochlore type structure, while GdSm1–xMgxZr2O7–x/2 (x?=?0·15, 0·20) ceramics consist of the pyrochlore type structure and a small amount of magnesia as the second phase. The total conductivity of GdSm1–xMgxZr2O7–x/2 ceramics obeys the Arrhenius relation, and gradually increases with increasing temperature from 723 to 1173 K. GdSm1–xMgxZr2O7–x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1·0×10–4 to 1·0 atm at each test temperature. The maximum value of the total conductivity is 1·29×10–2 S cm–1 at 1173 K for the GdSm0·85Mg0·15Zr2O6·925 ceramic.  相似文献   

13.
In this work, we report the polymorphic phase transitions(PPT) in ferroelectric Ba0.95Sr0.05ZrxTi(1-x)O3 (BSZT, x = 0.01–0.10) ceramics synthesized by using a solid-state reaction method. The doping elements and composition ratios were selected to create adjoining PPT phase boundaries near room temperature, hence to achieve a broadened peak of piezoelectric performance with respect to composition. The temperature-composition phase diagram was constructed and the effects of PPT on the electromechanical and ferroelectric properties of the ceramics were investigated. It was revealed that the two adjacent PPT regions at room temperature showed different characteristics in property enhancement. However, due to the proximity of the phase boundaries, Ba0.95Sr0.05ZrxTi(1-x)O3 ceramics in a fairly broad range of compositions (0.02  x  0.07) showed excellent piezoelectric properties, including a large piezoelectric constant (312 pC/N  d33  365 pC/N) and a high electromechanical coupling coefficient kp (0.42  kp  0.49).  相似文献   

14.
(1?x)Pb(Zr0.47Ti0.53)O3xPb[(Zn0.4Ni0.6)1/3Nb2/3]O3 [(1?x)PZT–xP(ZN)N] ceramics with 0.26  x  0.31 were sintered at 1100 °C, and their energy harvesters were fabricated. All specimens exhibit a similar energy convergence efficiency. However, the transduction coefficient (d33 × g33) increased with x, reaching 21.5 × 10?15 m2/N for the x = 0.31specimen; the figure-of-merit of the specimens shows a similar variation. The output energy density of the energy harvester also increased with x, and a high output energy density of 231 mW/cm3 was obtained for the harvester fabricated using the x = 0.31 specimen, indicating that the d33 × g33 value significantly affects the output energy density of the energy harvester.  相似文献   

15.
A new series of rare earth solid solutions Yb2?xLaxW3O12 were successfully synthesized by the solid-state method. Effects of substituted ion lanthanum on the microstructures and thermal expansion properties in the resulting Yb2?xLaxW3O12 ceramics were investigated by X-ray diffraction (XRD), thermogravimetric analyzer (TGA), field emission scanning electron microscope (FESEM) and thermal mechanical analyzer (TMA). Results indicate that the structural phase transition of the Yb2?xLaxW3O12 changes from orthorhombic to monoclinic with increasing substituted content of lanthanum. The pure phases can form in the composition range of 0  x < 0.5 with orthorhombic structure and 1.5 < x  2 with monoclinic one. High lanthanum content leads to a low hygroscopicity of Yb2?xLaxW3O12. Negative thermal coefficients of the Yb2?xLaxW3O12 (0  x  2) also vary from ?7.78 × 10?6 K?1 to 2.06 × 10?6 K?1 with increasing substituted content of lanthanum.  相似文献   

16.
The morphological, compositional, structural, dielectric and electrical properties of Bi1.5Zn0.92Nb1.5?xSnxO6.92?x/2 ceramics have been investigated by means of scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), temperature and frequency dependent dielectric constant and temperature dependent conductivity measurements for Sn-contents in the range of 0.00  x  0.60. It was shown that single phase of the pyrochlore ceramics can only be obtained for x  0.25. Above this value a ZnO phase appeared in the XRD patterns and SEM micrographs as well. An increase in the lattice constant and in the temperature coefficient of dielectric constant and a decrease in the dielectric constant values with increasing Sn content was observed for the ceramics which exhibited a single phase formation. A temperature dependent but frequency invariant dielectric constant was observed for this type of ceramics. The lowest electrical conductivity and highest dielectric constant was observed for the sample which contains 0.06 Sn. The Bi1.5Zn0.92Nb1.5?xSnxO6.92?x/2 pyrochlore ceramic conductivities are thermally active above 395 K. For temperatures greater than 395 K, the conductivity activation energy which was found to be 0.415 eV for the pure sample increased to 1.371 eV when sample was doped with 0.06 Sn.  相似文献   

17.
Iron-based oxides are considered as promising consumable anode materials for high temperature pyroelectrolysis. Phase relationships, redox stability and electrical conductivity of Fe3?xAlxO4 spinels were studied at 300–1773 K and p(O2) from 10?5 to 0.21 atm. Thermogravimetry/XRD analysis revealed metastability of the sintered ceramics at 300–1300 K. Low tolerance against oxidation leads to dimensional changes of ceramics upon thermal cycling. Activation energies of the total conductivity corresponded to the range of 16–26 kJ/mol at 1450–1773 K in Ar atmosphere. At 1573–1773 K and p(O2) ranging from 10?5 to 0.03 atm, the total conductivity of Fe3?xAlxO4 is nearly independent of the oxygen partial pressure. The conductivity values of Fe3?xAlxO4 (0.1  x  0.4) at 1773 K and p(O2) ~10?5 to 10?4 atm were found to be only 1.1–1.5 times lower than for Fe3O4, showing high potential of moderate aluminium additions as a strategy for improvement of refractoriness for magnetite without significant deterioration of electronic transport.  相似文献   

18.
From the characterization of a series compositions with general stoichiometry as Ca1−xZr1−xSm2xTi2O7 (0.00  x  1.00), the phase evolution between zirconolite (CaZrTi2O7) and pyrochlore type Sm2Ti2O7 has been elucidated. All the compositions were prepared by high temperature solid state reaction and characterized by powder X-ray diffraction (XRD) and electron probe for microanalyses (EPMA). Three major phase fields, namely two layer (2-M) or four layer (4-M) monoclinic zirconolite and cubic pyrochlore structure types were observed in this system. In addition, a feeble amount of perovskite type phase is found to coexist with zirconolite phase. 4-M zirconolite phase is observed as single phase field at the composition with x = 0.30 and 0.35, while cubic pyrochlore phase is observed as single phase at the compositions with x  0.60. Further, the composition and microstructure of coexisting phases are verified by back scattered electron image and EPMA studies.  相似文献   

19.
Electrical properties of lead-free solid solution ceramics from the Bi0.4871Na0.4871La0.0172TiO3 (BNLT) and BaZr0.05Ti0.95O3 (BZT) system have been improved by a thermal treatment technique. A modified two step mixed-oxide method was employed for the preparation of the (1?x)BNLT–xBZT ceramics, where x=0.06, 0.09, 0.12 and 0.20. After sintering at 1125 °C for 4 h, the BNLT–BZT ceramics were annealed at 825, 925 and 1025 °C. The annealing treatment caused an increase in dielectric constant of BNLT–BZT ceramics with x≤0.09 mol% and with x higher than 0.09 mol% the dielectric value dropped considerably. The ferroelectric properties of all annealed ceramic samples tend to decrease with increasing annealing temperature as confirmed by the slimmer P–E loops. The piezoelectric coefficient (d33) increased with annealing temperatures and a maximum value of ~170 pC/N was obtained from the ceramic samples annealed at 1025 °C with x=0.02.  相似文献   

20.
Dependence of microwave dielectric properties on the structural characteristics of (1  x)Ca0.85Nd0.1TiO3xLnAlO3 (Ln = Sm, Dy and Er) ceramics were investigated as a function of LnAlO3 content (0.05  x  0.25). For the specimens with SmAlO3, a single phase with orthorhombic perovskite was obtained through the entire composition, however, Dy2Ti2O7 and Er2Ti2O7 were detected as a secondary phase along with the orthorhombic perovskite phase for the specimens with DyAlO3 (x = 0.25) and ErAlO3 (0.10  x  0.25), respectively. With an increase of LnAlO3 content, the dielectric constant decreased due to the smaller ionic polarizability of LnAlO3 than Ca0.85Nd0.1TiO3. The temperature coefficient of the resonant frequency (TCF) decreased with LnAlO3 content resulted from an increase of oxygen octahedral distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号