首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During pulse discharge sintering (PDS) of Ti/SiC/C powder mixture, combustion synthesis reactions occurred at heating rates above 20 °C/min. With an increase in heating rate, combustion synthesis occurred at higher temperatures. The essential of this combustion reaction is the liquid reaction between Ti and formed Ti5Si3. The exothermic TiC formation during PDS process promotes this liquid reaction. We have found that the combustion reactions alone did not finish the formation reactions for Ti3SiC2, and further heating following the combustion reactions is necessary for the synthesis process of Ti3SiC2.  相似文献   

2.
MoSi2–25 wt.%SiC nanocomposite powder was successfully synthesized by ball milling Mo, Si and graphite powders. The effect of milling time and annealing temperature were investigated. Changes in the crystal structure and powder morphology were monitored by XRD and SEM, respectively. The microstructure of powders was further studied by peak profile analysis and TEM. MoSi2 and SiC were synthesized after 10 h of milling. Both high and low temperature polymorphs (LTP and HTP) of MoSi2 were observed at the short milling times. Further milling led to the transformation of LTP to HTP. On the other hands, an inverse HTP to LTP transformation took place during annealing of 20 h milled powder at 900 °C. Results of peak profile analysis showed that the mean grain size and strain of the 20 h milled powder are 31.8 nm and 1.19% that is in consistent with TEM image.  相似文献   

3.
《Ceramics International》2023,49(15):24989-25002
Multiphase ceramics have been highlighted due to the combination of different properties. This work proposes to obtain the multiphase composite of (Zr,Ti)B2–SiC based on the mixture of ZrB2, SiC, and TiO2 sintered without pressure. The effect of TiO2 addition on solid solution formation with ZrB2, densification, microstructure, and mechanical properties was investigated. For this, 2.0 wt% TiO2 was added to ZrB2–SiC composites with 10–30 vol% SiC and processed by reactive pressureless sintering at 2050 °C with a 2 h holding time. Sinterability, crystalline phases, microstructure, Vickers hardness, and indentation fracture toughness of these composites were analyzed and compared to the non-doped ZrB2–SiC samples. The XRD analysis and EDS elemental map images indicated the incorporation of Ti atoms into the ZrB2 crystalline structure with solid solution generation of (Zr,Ti)B2. The addition of TiO2 resulted in matrix grain size refinement and a predominant intergranular fracture mode. The relative densities were not significantly modified with the TiO2 addition, though a higher weight loss was detected after the sample sintering process. The composites doped with TiO2 showed an increase in fracture toughness but exhibited a slightly lower Vickers hardness compared to composites without TiO2 addition.  相似文献   

4.
The process of reactive in-situ synthesis of dense particulate reinforced TiB2/TiC and TiB2/TiN ceramic matrix composites from B4C–Ti and BN–Ti powder blends with and without the addition of Ni has been modeled. The objective of modeling was the determination of optimal thermal conditions preferable for production of fully dense ceramic matrix composites. Towards this goal heat transfer and combustion in dense and porous ceramic blends were investigated during heating at a constant rate. This process was modeled using a heat transfer–combustion model with kinetic parameters determined from the differential thermal analysis of the experimental data. The kinetic burning parameters and the model developed were further used to describe the process of combustion synthesis in a constrained die under pressure. It has been shown that heat removal from the reaction zone affects the ignition temperature of thermal explosion.  相似文献   

5.
A reactive infiltration processing of SiC/Fe–Si composites using preforms made of coked rice husks (RHs) and SiC powder in different ratios is reported, in which FeSi2 alloy was used as infiltrant. The preforms were heat-treated at 1550 °C for 6 h prior to the infiltration. The coked RHs, which are composed of SiO2 and C, were converted to SiC and poorly crystallized C by carbothermal reduction during the heat treatment. The study of the microstructure and mechanical properties of the composites shows that molten Fe–Si alloy had good wetting of the heat-treated preforms and adequate infiltration properties. Free carbon in the preform reacted with Si in the molten FeSi2 during infiltration forming new SiC, the composition of the intermetallic liquid being moved towards that of FeSi. As a result, the infiltrated composites are composed of SiC, FeSi2 and FeSi phases. Vickers hardness, elastic modulus, three-point flexural strength and indentation fracture toughness of the composites are found to increase with SiC additions up to 30% w/w in the preforms, reaching the values of 18.2 GPa, 290 GPa, 213 MPa and 4.9 MPa m1/2, respectively. With the SiC addition further raised to 45% w/w, the elastic modulus, flexural strength and fracture toughness of the composite turned down probably due to high residual stress and hence the more intense induction of microcracks in the composite. De-bonding of SiC particles pulled out of the Fe–Si matrix, transgranular fracture of part of the SiC particles and in the Fe–Si matrix, and crack bridging all exist in the fracture process of the composites.  相似文献   

6.
CVD silicon carbide was brazed to itself using two Ag–Cu–Ti braze alloys reinforced with SiC particulates to control braze thermal expansion and enhance joint strength. Powders of the braze alloys, Ticusil (composition in wt%: Ag–26.7Cu–4.5Ti, TL: 900 °C) and Cusil-ABA (Ag–35.3Cu–1.75Ti, TL: 815 °C) were pre-mixed with 5, 10 and 15 wt% SiC particulates (~20–30 μm) using glycerin to create braze pastes that were applied to the surfaces to be joined. Joints were vacuum brazed and examined using optical microscopy (OM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and the Knoop hardness test. The SiC particles were randomly distributed in the braze matrix and bonded to it via reaction with the titanium from the braze alloy. Titanium together with Si and C segregated at the particle/braze interface, and promoted nucleation and precipitation of the Cu-rich secondary phase on particle surfaces. The Si–Ti–C-rich reaction layers also formed at the interface between CVD SiC substrate and the braze alloy. The loss of Ti in the reaction with SiC particulates did not impair either the bond quality or the thickness of the reaction layer on the CVD SiC substrate. Microhardness measurements showed that the dispersed SiC particulates lowered the braze hardness by depleting the braze matrix of Ti. Theoretical calculations indicated the CTE of the braze to decrease by nearly 45–60% with the incorporation of about 45 vol% SiC.  相似文献   

7.
The creep behavior of SiC/C/SiC microcomposites at 1200–1400 °C and 140–450 MPa was investigated in the presence and absence of matrix cracking. The microcomposites consisted of single Hi Nicalon or Carborundum fibers coated with a CVD carbon interlayer and a CVD SiC matrix. Since the fibers and matrix had been examined by the identical experimental technique, direct comparisons of the creep of the composite and of the constituents were performed. The creep of uncracked microcomposites was successfully modeled using a simple rule of mixtures algorithm. When matrix cracks were present, the microcomposites were modeled using a series composite consisting of intact microcomposite, exposed fiber at the matrix crack, and the debonded region in between. Trends for behavior with respect to the various mechanical and structural parameters that control creep are presented.  相似文献   

8.
SiC particulates were mixed with Ag–Cu–Ti powders to fabricate SiCP/Ag–Cu–Ti (SICACT) sheets by tape casting process, which were used to braze the sintered SiC ceramics with the structure of SiC/Ag–Cu–Ti foil/SICACT sheet/Ag–Cu–Ti foil/SiC. Microstructure and joining strength both at room temperature and at high temperature were characterized by electron probe X-ray microanalyzer, electron dispersive spectroscopy, transmission electron microscopy, and flexural strength test. The SiC particulates from the SICACT sheets were randomly distributed in the filler alloy matrix and reacted with Ti from the filler alloy. Reaction products TiC and Ti5Si3 were found in the interfacial reaction layer. With the increase in SiC particulates volume fraction, the joining strength at room temperature first increased, and then decreased, which was affected by both CTE mismatch and the thickness of the reaction layer. In addition, the joining strength of joints brazed using SICACT sheets at 600?°C can reach 197 MPa, which was obviously higher than that brazed using Ag–Cu–Ti filler alloy.  相似文献   

9.
《Ceramics International》2016,42(5):6319-6328
The development of new composite fillers is crucial for joining ceramics or ceramics to metals because the composite fillers exhibit more advantages than traditional brazing filler metal. In this research, novel B4C reinforced Ag–Cu–Ti composite filler was developed to braze SiC ceramics. The interfacial microstructure of the joints was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of B4C addition and brazing temperature on the microstructure evolution and mechanical properties of the joints was analyzed. The results revealed that TiB whisker and TiC particles were simultaneously synthesized in the Ag-based solid solution and Cu-based solid solution due to the addition of B4C particles. As the brazing temperature increased, the thickness of Ti3SiC2+Ti5Si3 layers adjacent to SiC ceramic increased. Desirable microstructure similar to the metal matrix reinforced by TiB whisker and TiC particles could be obtained at brazing temperature of 950 °C. The maximum bending strength of 140 MPa was reached when the joints brazed at 950 °C for 10 min, which was 48 MPa (~52%) higher than that of the joints brazed using Ag–Cu–Ti filler.  相似文献   

10.
ABSTRACT

Al2O3–SiC composite powders were prepared from kyanite tailings mixed with 20% excess carbon coke via carbothermal reduction (CR) reaction. The optimised synthesis condition for synthesising Al2O3–SiC composite powders was at 1600°C for 6?h. The equilibrium relationship curves of the condensed phases were presented and the temperature dependence of the phase composition was also studied. The results show that irregular Al2O3 and SiC grains first formed at 1500°C, and the elements C, O, Al, and Si randomly distributed in the each crystal particles. The amount of Al2O3–SiC composites increased with the increasing synthesis temperature and reaction time. Finally, Al2O3–SiC composite bulk materials were further prepared by pressureless sintering using the synthesised Al2O3–SiC composite powders as raw materials, and their mechanical properties were investigated in detail. All these results indicate that the CR method can offer a niche application for the development of kyanite tailings.  相似文献   

11.
《Ceramics International》2023,49(10):15055-15064
Niobium carbide composite coatings with Nb2C, NbC, Nb3Si as the main phases were prepared in situ on the surface of TC4 titanium alloy by plasma spraying Nb–SiC composite powder. The microstructure of the coating was characterized in detail by TEM, and the reaction mechanism of Nb–SiC was revealed. Sub-micron and nano-scale NbC grains dispersed in Nb3Si region, nano-Nb/Nb3Si cellular eutectic region, and equiaxed Nb2C nanograins region were formed in the coating. The research results show that Nb and SiC reacted firstly to form cubic NbC and Nb3Si phases during the plasma spraying process. Then, NbC with a higher melting point took the lead in crystallization during the cooling process of the coating, forming sub-micron and nano-scale NbC granular fine grains. Nb3Si with a lower melting point crystallized around the sub-micron and nano-scale NbC granular fine grains in the subsequent cooling process. In the plasma spraying process, the molten droplets formed Nb/Nb3Si cellular eutectic structure under large temperature gradient and extremely fast cooling rate. The remaining Nb in the raw material powder formed a diffusion couple with NbC to generate fine and dispersed nano-equiaxed Nb2C with cubic structure. The present investigation provides a reference for the reaction synthesis of advanced nanocomposites using Nb–SiC system.  相似文献   

12.
Investigated was the effect of Si substitution for SiC on SHS in the Ti–Si–C system. Starting powders were intermixed to obtain 3Ti–SiC–C and 3Ti–Si–2C green mixtures and then green compacts by uniaxial pressing. The influence of heating rate, reactor temperature, and replacement of SiC by Si was studied by XRD, SEM, and TEM. In combustion products obtained in optimized conditions, Ti3SiC2 was found to be predominant. In comparison with conventional methods, our products obtained in a one-step low-temperature process contained minimal amounts of undesired impurities and required no finishing processes such as chemical purification.  相似文献   

13.
低温合成Ti3SiC2陶瓷   总被引:1,自引:1,他引:0  
采用机械合金化和放电等离子烧结技术制备了纯度较高的Ti3SiC2陶瓷,研究了微量Al对Ti3SiC2的机械合金化和放电等离子烧结过程的影响.结果表明:添加适量的Al可以显著提高机械合金化及放电等离子烧结产物中Ti3SiC2的含量,并显著降低高纯度Ti3SiC2的烧结温度.机械合金化10h,成分为3Ti/Si/2C/0.2Al(摩尔比)的混合粉体,经850℃放电等离子烧结可获得质量分数(下同)高达96%的Ti3SiC2块体,烧结温度提高到1 100℃,可获得纯度为99.3%、相对密度高达98.9%的Ti3SiC2致密块体.  相似文献   

14.
李良  周爱国 《硅酸盐通报》2011,30(5):1114-1117,1141
Ti3SiC2是一种具有优良性能的可加工陶瓷材料.通过与第二相的复合,Ti3SiC2复合材料克服了单一材料的某些缺点,扩大了Ti3SiC2的应用领域.颗粒弥散增强Ti3SiC2复合材料,相对于Ti3SiC2单相材料,具有更高的硬度、耐磨性和强度,但是损失了部分可加工性与韧性.Ti3SiC2作为超硬复合材料的结合剂,克服...  相似文献   

15.
Ti3SiC2陶瓷的制备   总被引:4,自引:2,他引:2  
Ti3SiC2陶瓷由于具有非常优越的性能而受到广泛关注,但到目前对于反应合成Ti3SiC2的热力学和动力学仍缺乏系统地研究.本文对反应合成Ti3SiC2进行了热力学计算和动力学分析,利用Ti、Si、C混合粉末进行热压,制备了较高纯度的Ti3SiC2陶瓷,并对烧结试样进行XRD和断口SEM分析.热力学计算结果表明:在常用的反应合成Ti3SiC2的材料体系中,Ti-Si-C三元粉末的反应热力学驱动力最大,据此选择Ti、Si、C粉末,按照3:1.2:2的原子比混合作为反应合成Ti3SiC2的原料;动力学分析结果表明:Ti-Si-C三元元素粉末的反应动力学要求必须有较高的升温速度,才能获得Ti3SiC2材料.根据动力学分析结果设计反应合成工艺,利用真空热压获得了纯度达到89%(体积分数,下同)以上的Ti3SiC2材料.  相似文献   

16.
Mechanical alloying has been used to prepare powder mixtures of alumina and yttria as a means to create composites with a dominant matrix phase together with small particles of a dispersed second phase. The yttria–alumina system, containing five possible phases, has the potential for creating eight combinations of matrix and dispersed phases. Here compositions designed to give YAlO3 (YA) dispersed in Y3Al5O12 (Y3A5 i.e. YAG) or Y4Al2O9 (Y2A) were studied. After milling with steel tools for times up to 8 h, the powders were subjected to thermal cycles up to 1500°C during which the phase evolution was monitored using X-ray diffractometry (including high-temperature XRD) and differential thermal analysis. During milling the original crystal structures were quickly broken down, in some cases partially replaced by an intermediate structure after milling. Upon subsequent heating the milled mixtures crystallized to give the expected phases, YA in Y3A5 and YA in Y2A respectively, but the reaction route was seen to be different depending on the amount of amorphization of the yttria. Contamination by iron was seen to affect the phase distribution and the lattice parameters.  相似文献   

17.
利用热等静压原位合成技术制备了Ti3SiC2/SiC复相陶瓷,对其高温氧化行为进行了研究.结果表明,Ti3SiC2/SiC复相陶瓷在空气中静态氧化时的氧化增重符合抛物线规律,有比纯Ti3SiC2更好的抗氧化性能,并且在1400℃的长时抗氧化性能优于1200℃.  相似文献   

18.
A SiC–AlN composite was fabricated by mechanical mixing of SiC and AlN powders, hot pressed under 40 MPa at 1950°C in Ar atmosphere. The object of this attempt was to achieve full density and a little solid solution formation. Fine microstructure and crack deflection behaviour are to improve the mechanical properties of the SiC–AlN composite. The bending strength and fracture toughness were achieved 800 MPa and 7·6 MPa m1/2 at room temperature, respectively. The fracture toughness of the SiC–AlN composite shows minimal change between room temperature and 1400°C. Post-HIP improves the surface densification of the SiC–AlN composite resulting in an increase of the strength and the ability to resist oxidization. The bending strength of SiC–AlN composite increases from 800 to 1170 MPa after HIP treatment for 1 h under 187 MPa at 1700°C in N2 atmosphere.  相似文献   

19.
The spark-plasma sintering (SPS) kinetics of ZrB2–SiC powder mixtures was investigated as a function of the degree of high-energy co-ball-milling and of the SiC content (5, 17.5, or 30 vol%). As in ZrB2 without SiC, it was found that the crystal size refinement induced by the continued milling progressively enhances the SPS kinetics of ZrB2–SiC, again only moderately if the refinement is to the ultra-fine range, but very marked if the refinement is to the nanoscale. It was also found that the SiC addition further enhances the SPS kinetics of ZrB2, although the improvement did not scale directly with the SiC content, and became less relevant with the refinement of the ZrB2 crystal sizes to the nanoscale. The improved kinetics induced by the SiC addition was identified as being due to the formation of amorphous borosilicate from the oxide passivating layers on the ZrB2 and SiC particles. This not only speeds up the interparticle diffusion, but also it is segregated under the application of pressure into the multi-grain joints, filling pores. The enhanced kinetics induced by the progressive milling is due to the continuous reduction of the diffusion distances and to the development of a greater density of grain boundaries available as faster diffusion paths, together with the greater formation of amorphous borosilicate. Implications of interest for the ultra-high-temperature ceramics community are discussed.  相似文献   

20.
Selection of desired powder–polymer mixture (feedstock) formulation is a key factor in manufacturing perfect parts via powder injection molding. In the present study, feedstock characteristics of an aluminum-based powder were investigated by torque rheometry and rheological analyses. Several binders containing various amounts of polypropylene (PP), paraffin wax (PW), and stearic acid (SA) were selected for torque mixing and viscosity evaluation. Then, feedstocks consisting of 54, 58, 62, and 66 vol. % solid contents were prepared with modified binder. Feedstock flow behaviors were investigated regarding the rheological parameters such as mixing torque, viscosity, flow behavior index, flow activation energy and moldability index. It was found that increasing solid loading from 54 to 62 vol. % led to improved rheological behavior. This improvement was not observed in high solid contents, i.e., 66 vol. %. Based on experimental results, the optimized binder composition (60PW,35PP,5SA vol. %) and the optimum powder loading (62 vol. %) were selected as the best formulations for injection of aluminum powder. These values are supported by critical powder volume concentration measurements deduced from the oil absorption method. The resulting aluminum molded green parts with no defects exhibited the straightforward injection molding process of selected feedstock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号