首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lowering operating temperature and optimizing electrolyte thickness, while maintaining the same high efficiencies are the main considerations in fabricating solid oxide fuel cells (SOFCs). In this study, the effect of yttrium-stabilized bismuth bilayer electrolyte thickness on the electrical performance was investigated. The yttrium-stabilized bismuth bilayer electrolyte was coated on the nickel–samarium-doped composite anode/samarium-doped ceria electrolyte substrate with varying bilayer electrolyte thicknesses (1.5, 3.5, 5.5, and 7.5 μm) via dip-coating technique. Electrochemical performance analysis revealed that the bilayer electrolyte with 5.5 μm thickness exhibited high open circuit voltage, current and power densities of 1.068 V, 259.5 mA/cm2 and 86 mW/cm2, respectively at 600 °C. Moreover, electrochemical impedance spectroscopy analysis also exhibited low total polarization resistance (4.64 Ωcm2) at 600 °C for the single SOFC with 5.5 μm thick yttrium-stabilized bismuth bilayer electrolyte. These findings confirm that the yttrium-stabilized bismuth bilayer electrolyte contributes to oxygen reduction reaction and successfully blocks electronic conduction in Sm0.2Ce0.8O1.9 electrolyte materials. This study has successfully produced an Y0.25Bi0.75O1.5/Sm0.2Ce0.8O1.9 bilayer system with an extremely low total polarization resistance for low-temperature SOFCs.  相似文献   

2.
A composite polymer electrolyte of polyethyleneoxide-LiBF4 containing fine particles of zeolite was studied using electrochemical impedance spectroscopy, cyclic voltammetry, differential scanning calorimetry, infrared spectroscopy and scanning electron microscopy. When compared with the polymer electrolyte without zeolite, the specific conductivity of the composite electrolyte film is higher by about two orders of magnitude at room temperature. The increase in specific conductivity is explained as due to increased amorphocity which is reflected in the thermal studies. The nature of the cyclic voltammograms and infrared spectra is discussed.Part of this work was presented at the Electrochemical Society Meeting, Honolulu, Hawai (May 1993).  相似文献   

3.
The effects of activation, ohmic and concentration polarization on the overall polarization in solid oxide fuel cells are presented. A complete analysis was conducted based on thermodynamic principles for the calculation of cell voltage. Treating the fuel cell as a control volume, the irreversibility term in a steady flow thermodynamic system was related to the overall polarization. The entropy production was calculated and related to the lost work of the fuel cell, while the heat loss from the cell was determined from the entropy balance. To generalize the cell voltage–current density expression, the Butler–Volmer model was used in the calculation of activation polarization and both ordinary and Knudsen diffusions were considered in the calculation of concentration polarization. The overall cell resistance was deduced from the generalized cell voltage–current density expression. The concentration resistance at the anode can be minimized by humidifying the hydrogen with an appropriate amount of water, depending on the thickness of the anode used. Comparison of polarization effects on the cell performance between the electrolyte-supported and anode-supported cells showed that the latter would give a better cell performance.  相似文献   

4.
Flexible solid oxide fuel cells (SOFCs) have attracted increasing attention due to their excellent mechanical stability and lightness. An essential electrolyte material for developing highly flexible SOFCs is 3 mol% yttria-stabilized zirconia (3YSZ), but there remain some difficulties in its application to SOFCs. We report a phase-controlled, bendable, ultra-thin 3YSZ electrolyte with a thickness of ~22 µm, high flexural strength, and improved ohmic resistance that surpasses that of 8 mol% YSZ electrolytes. A flexible cell (total thickness < 60 µm) is fabricated through simple and reproducible methods such as tape casting and screen printing. The highest cell performance is achieved among the reported flexible SOFCs, with the maximum power density of 0.86 W cm?2 at 900 °C using conventional cermet electrodes, Ni-YSZ anode, and LSM-YSZ cathode. Our study provides a well-defined framework for developing flexible SOFCs as next-generation power sources for mobile devices with high volumetric power.  相似文献   

5.
《Ceramics International》2020,46(3):2677-2681
In this study, Ce0.8Er0.2O2-α was prepared via a microemulsion method. Then, Ce0.8Er0.2O2-α powder was mixed with melted NaCl-KCl (1:1 mol ratio) at the weight ratio of 80%: 20% to obtain Ce0.8Er0.2O2-α-KCl-NaCl at 750 °C. Ce0.8Er0.2O2-α and Ce0.8Er0.2O2-α-KCl-NaCl were characterized by thermogravimetry analysis and differential scanning calorimetry (TGA-DSC), Raman spectrometer, X-ray diffraction (XRD) and scanning electron microscope (SEM). The log (σT) ~ 1000 T-1 plots and fuel cell performances of Ce0.8Er0.2O2-α and Ce0.8Er0.2O2-α-KCl-NaCl were tested at 400–700 °C. The maximum output power density of Ce0.8Er0.2O2-α-KCl-NaCl was 187 mW cm-2 at 700 °C which is six times greater than that of Ce0.8Er0.2O2-α.  相似文献   

6.
In this research, solid oxide fuel cell electrolytes were fabricated by aqueous tape-casting technique. The basic compositions for SOFC electrolyte systems were focused on yttria-stabilized zirconia (YSZ) system. The powders used in this study were from different sources. ZrO2-based system doped with 3, 8, and 10 mol% of Y2O3, and 8YSZ electrolyte tape illustrated the desirable properties. The grain size of the sintered electrolyte tapes was in the range of 0.5–1 μm with 98–99% of theoretical density. Phase and crystal structure showed the pure cubic fluorite structure for 8–10 mol% YSZ and tetragonal phase for 3 mol% doped. The electrolyte tapes sintered at 1450 °C for 4 h had the highest ionic conductivity of 30.11 × 10−3 S/cm which was measured at 600 °C. The flexural strengths were in the range of 100–180 MPa for 8–10 mol% YSZ, and 400–680 MPa for 3 mol% YSZ.  相似文献   

7.
The physico-chemical properties of two protonic electrolytes BaCe0.8Y0.2O3-δ and BaCe0.9Y0.1O3-δ were investigated. The BaCe0.8Y0.2O3-δ electrolyte showed better crystallographic purity and lower amount of carbonate phase on the surface. A comparison between the BaCe0.8Y0.2O3-δ protonic electrolyte supported cell and an anionic (Ce0.8Gd0.2O1.95) one was made. The maximum power densities (IR-free) of 183 mW cm−2 and 400 mW cm−2 were obtained in H2 (R.H. 3%) at 700 °C, for the protonic and anionic electrolyte based cells, respectively.  相似文献   

8.
Rare earth silicates with apatite structure are being actively studied as an alternative electrolyte material for solid oxide fuel cells (SOFC) operating in the intermediate temperature range. In this paper we report on the synthesis of La9.33+x/3AlxSi6?xO26+δ (with x = 0–1.5) and La9.83Fe1.5Si4.5O26 powders using a modified sol–gel process. The parameters involved in the process have been optimized for preparing phase pure, homogeneous and nanometer sized powders. The obtained powders were characterized using scanning electron microscopy, X-ray diffraction and thermal analysis. Pressureless sintering experiments were performed and pellets having relative densities greater than 96% could be obtained after 5 h dwelling in the temperature range between 1500 and 1550 °C.  相似文献   

9.
The microstructure, thermal expansion, microhardness, indentation fracture toughness, and ionic conductivity of neodymium-doped ceria (NDC) prepared by coprecipitation were investigated. The results revealed that the average particle size (DBET) ranged from 20.1 to 25.8 nm, crystallite dimension (DXRD) varied from 17.5 to 20.7 nm, and the specific surface area distribution was from 31.25 to 40.27 m2/g for neodymium-doped ceria stacking powders. Dependence of lattice parameter, a, versus dopant concentration, x, of Nd3+ ion shows that these solid solutions obey Vegard's rule as a(x) = 5.4069 + 0.1642x for Ce1?xNdxO2?(1/2)x for x = 0.05–0.25. For neodymium-doped ceria ceramics sintered at 1500 °C for 5 h, the bulk density was over 95% of the theoretical density. The maximum ionic conductivity, σ800°C = 4.615 × 10?2 S/cm, with the minimum activation energy, Ea = 0.794 eV was found for the Ce0.75Nd0.25O1.875 ceramic. Trivalent, neodymium-doped ceria ceramics revealed high fracture toughness, the fracture toughness distribution was in the range of 6.236 ± 0.021 to 6.846 ± 0.017 MPa m1/2. The high indentation fracture toughness of neodymium-doped ceria was attributed to crack deflection. Moreover, the porosity may influence the mechanical properties such as microhardness and fracture toughness. It was observed that as the porosity reduced, the microhardness and fracture toughness increased.  相似文献   

10.
The structural integrity of the sealant is critical for the reliability of solid oxide cells (SOCs) stacks. In this study, elastic modulus (E), hardness (H) and fracture toughness (KIC) of a rapid crystallizing glass of BaO–CaO–SiO2 system termed “sealant G” are reported as determined using an indentation test method at room temperature. A wide range of indentation loads (1 mN–10 N) was used to investigate the load-dependency of these mechanical properties. Values of 95 ± 12 GPa, 5.8 ± 0.2 GPa and 1.15 ± 0.07 MPa m0.5 were derived for E, H and KIC using the most suitable indentation loads. An application relevant annealing treatment of 500 h at 800 °C does not lead to a significant change of the mechanical properties. Potential self-healing behavior of the sealant has also been studied by electron microscopy, based on heat treatment of samples with indentation-induced cracks for 70 h at 850 °C. Although the sealant G is considered to be fully crystallized, evidence indicates that its cracks can be healed even in the absence of a dead load.  相似文献   

11.
Reduce electrolyte thickness can improve solid oxide fuel cell (SOFC) performance. However, thinner electrolyte often contains prominent defects and flaws, which may decrease the yield and increase operation risk. This work proposes a method to modify the thin film YSZ electrolyte, to improve cell reliability and durability. The as-sintered anode supported half-cell with screen printed YSZ electrolyte was immersed in precursor solution of Y(NO3)3·6H2O and Zr(NO3)4·5H2O, and being treated under hydrothermal condition of 150°C for 12 h. As a result, the modified cells show slight increase in the OCV values. Furthermore, the hydrothermal modification effectively promotes interface sintering between YSZ electrolyte and GDC barrier layer, yielding a smaller ohmic resistance of .142 Ω·cm2 (a decrease of ∼11%) and a higher peak power density of .964 W/cm2 (an increase of ∼18%) at 750°C, than pristine cell. Moreover, the modified cell operates stably over 300 h, while the pristine cell presents large and irregular voltage fluctuations. This work suggests that the hydrothermal modification is an effective and promisingly industrial applicable method for thin film electrolyte recovery in SOFCs.  相似文献   

12.
13.
In this study, the ceramic powders of Ce1?xGdxO2?x/2 and Ce1?xNdxO2?x/2 (x=0.05, 0.10, 0.15, 0.20 and 0.25) were synthesized by ultrasound assisted co-precipitation method. The ionic conductivity was studied as a function of dopant concentration over the temperature range of 300–800 °C in air, using the impedance spectroscopy. The maximum ionic conductivity, σ800 °C=4.01×10?2 Scm?1 with the activation energy, Ea=0.828 kJmol?1 and σ800 °C=3.80×10?2 Scm?1 with the activation energy, Ea=0.838 kJmol?1 were obtained for Ce0.90Gd0.10O1.95 and Ce0.85Nd0.15O1.925 electrolytes, respectively. The average grain size was found to be in the range of 0.3–0.6 μm for gadolinium doped ceria and 0.2–0.4 μm for neodymium doped ceria. The uniformly fine crystallite sizes (average 12–13 nm) of the ultrasound assisted prepared powders enabled sintering of the samples into highly dense (over 95%) ceramic pellets at 1200 °C (5 °C min?1) for 6 h.  相似文献   

14.
《Ceramics International》2022,48(15):21824-21831
The mechanical strength and electrical characteristics of 10 mol% gadolinium (Gd)-doped ceria (10GDC) and gadolinium-samarium (Gd–Sm) co-doped ceria ceramics treated by contact reduction were investigated. The observed increased strength of 10GDC was similar to the strength previously reported for ceria with and without Sm doping. X-ray photoelectron spectroscopy revealed that only the surface was reduced in the strengthened material. In addition, the strengthened ceramic displayed improved hardness at low test loads, which suggested the formation of a surface compression layer. The reducing conditions did not affect the electrical conductivity of the 10GDC material. Co-doping with 10 mol% each of Gd and Sm improved strength and conductivity compared with 10GDC and 20GDC. When the co-doped material was reduced, the electric conductivity remained identical; however, the mechanical strength improved, exceeding the strength of zirconia.  相似文献   

15.
Direct hydrocarbon solid oxide fuel cells   总被引:2,自引:0,他引:2  
McIntosh S  Gorte RJ 《Chemical reviews》2004,104(10):4845-4865
  相似文献   

16.
In order to predict the electrochemical performance of Solid Oxide Fuel Cells (SOFCs), a telescopic projective Adams (TPA) multiscale simulation method is proposed in this work. This method is constructed on the basis of the equation-free method (EFM). A lattice Boltzmann model is used as the fine-scale simulator of the proposed method. The electrochemical reaction-diffusion process was simulated by the TPA and the lattice Boltzmann method (LBM). The results of the two methods were found to be in good agreement, and the TPA method can give accurate results with lower computational costs. The electrochemical reactions were also simulated based on the TPA method. The results were consistent with the experimental data, indicating that the proposed TPA method is an effective tool to simulate the electrochemical reactions of SOFCs. Also, the proposed method is suggested to be helpful in multiscale modeling of other energy systems.  相似文献   

17.
Abstract

Thin films of 8 mol% yttria stabilised zirconia (YSZ) electrolyte have been deposited on non-conducting porous NiO–YSZ anode substrates using electrophoretic deposition (EPD) technique. Deposition of such oxide particulates on non-conducting substrates is made possible by placing a conducting steel plate on the reverse side of the presintered porous substrates. Thickness of the substrates, onto which the deposition has been carried out, varied in the range 0·5–2·0 mm. Dense and uniform YSZ thin films (thickness: 5–20 μm) are obtained after being cofired at 1400°C for 6 h. The thickness of the deposited films is seemed to be increased with increasing porous substrate thickness. Solid oxide fuel cell (SOFC) performance is measured at 800°C using coupon cells with various anode thicknesses. While a peak power density of 1·41 W cm?2 for the cells with minimum anode thickness of 0·5 mm is achieved, the cell performance decreases with anode thickness.  相似文献   

18.
Lanthanum strontium cobaltite (LSCo) is considered as a good candidate cathode contact material for solid oxide fuel cells, due to high electrical conductivity. However, LSCo has a very large coefficient of thermal expansion (CTE) than the cells and metallic interconnects. As a result, poor mechanical stability is expected during thermal cycling. To minimize the CTE mismatch, we investigate a composite approach involving mixing LSCo with an inert material of low CTE, such as mullite at volume fractions from 0.1 to 0.4. Composite's CTE shows a decreasing trend with increasing mullite volume fractions and is consistent with model predictions. X-ray powder diffraction analysis of sintered LSCo/mullite composites exhibits no presence of other phases for samples aged for 500 hours at 800°C, indicating chemical compatibility. Electrical conductivity by a 4-pt method shows a decreasing trend with increasing mullite content. Contact strength of as-sintered and thermally cycled samples show that only the composite with 0.4 volume fraction has a measurable strength; the other composites have no strength. Overall, the composite approach is demonstrated in the LSCo/mullite system to lower the CTE and hence achieve thermal cycle stability. The addition of the inert phase to the LSCo matrix, however, also reduces the electrical conductivity.  相似文献   

19.
Electronically conducting interconnector materials are required to connect consecutive anodes and cathodes in high-temperature solid oxide fuel cells. Nb-doped TiO2-glass composites, prepared by cold pressing and sintering in air above 1200° C, possess adequate conductivity and resistance to oxidizing and reducing atmospheres, as well as compatibility with Y2O3-doped ZrO2. They thus show promise as interconnector materials.Work performed under the auspices of the US Department of Energy.  相似文献   

20.
《Ceramics International》2015,41(7):8785-8790
In this study, 3 mol% yttria stabilized zirconia (3YSZ) is investigated as a SOFC electrolyte alternative to 8 mol% yttria stabilized zirconia (8YSZ). The mechanical and electrochemical properties of both materials are compared. The mechanical tests indicate that the thickness of 3YSZ can be reduced to half without sacrificing the strength compared to 8YSZ. By reducing the thickness of 3YSZ from 150 µm to 75 µm, the peak power density is shown to increase by around 80%. The performance is further enhanced by around 22% by designing of novel electrode structure with regular cut-off patterns previously optimized. However, the cell with novel designed 3YSZ electrolyte exhibits 30% lower maximum power density than that of the cell with 150 µm-thick standard 8YSZ electrolyte. Nevertheless, the loss in the performance may be tolerated by decreasing the fabrication cost revealing that 3YSZ electrolyte with cut-off patterns can be employed as SOFC electrolyte alternative to 8YSZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号