首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Industrial experiments were performed for a retrofitted 660 MWe full-scale down-fired boiler. Measurements of ignition of the primary air/fuel mixture flow, the gas temperature distribution of the furnace and the gas components in the furnace were conducted at loads of 660, 550 and 330 MWe. With decreasing load, the gas temperature decreases and the ignition position of the primary coal/air flow becomes farther along the axis of the fuel-rich pipe in the burner region under the arches. The furnace temperature also decreases with decreasing load, as does the difference between the temperatures in the burning region and the lower position of the burnout region. With decreasing load, the exhaust gas temperature decreases from 129.8 °C to 114.3 °C, while NOx emissions decrease from 2448 to 1610 mg/m3. All three loads result in low carbon content in fly ash and great boiler thermal efficiency higher than 92%. Compared with the case of 660 MWe before retrofit, the exhaust gas temperature decreased from 136 to 129.8 °C, the carbon content in the fly ash decreased from 9.55% to 2.43% and the boiler efficiency increased from 84.54% to 93.66%.  相似文献   

2.
Several numerical simulations are conducted to investigate the influence of pulverized-coal combustion characteristics and NOx emissions with different configurations of nozzle and arrangements of an over-fire air device for a 600 MWe boiler unit. It is found by a series of comparisons that the numerical simulation results are almost in agreement with the in-situ experimental results, including the flue gas temperature of the burner outlet, the flue gas temperature along the furnace height, the NOx concentration, and combustible content in the fly ash of the air preheater outlet, which indicates that the numerical model and the grid are reasonable. Numerical simulation results show that setting the over-fire device in which the inner is straight flow and the outer is swirl flow and the staggered arrangement of two layers of over-fire air (OFA) in the boiler are both conducive to the pulverized-coal combustion in the furnace and to the reduction of NOx emissions. The results also show the values of 241.64?mg/m3 @ 6% O2 for the lowest NOx concentration at the furnace outlet. Compared with the boiler without OFA, the NOx concentration decreased by 60.4%. Using the staggered arrangement of two layers of OFA in the practical 600 MW boiler unit, the gas temperature can reach 1100?K at the height of 100?mm away from the burner outlet, leading to coal particle ignition immediately; moreover, the NOx emission concentration reduced to 284?mg/m3 @ 6% O2 and heat loss due to unburned carbon in refuse of the air preheater outlet is 3.17%.  相似文献   

3.
为摸清引进的采用斗巴(Doosan Babcock)技术制造的超临界机组w型火焰锅炉炉内空气动力特性,在1:20冷态模化试验台上对一台近期投产的600MWe超临界机组w型火焰锅炉进行了三次风率为0%、6%和12%的冷态空气动力场试验.三个风率下炉内流场均出现偏斜现象,表现为后墙侧下行气流折转上行明显早于前墙侧,横截面上...  相似文献   

4.
Air-surrounding-fuel is a well-known concept used within tangential and wall-fired boilers. Here, we report for the first time on industrial experiments performed to study the effects of this concept on a 660 MWe full-scale down-fired boiler. Data are reported for the gas temperature distributions along the primary air and coal-mixed flows, furnace temperatures, gas compositions, for example O2, CO and NOx, and gas temperatures in the near-wall region. The influence of concentration control valve (CCV) opening on combustion and NOx emission in the furnace were determined. The results show that the flame stability, temperature distribution, unburnt carbon are influenced by both concentration ratios and fuel-rich flow velocities. As CCV opening increases, NOx emissions decrease from 2594 mg/m3 to 1895 mg/m3. Considering altogether economic benefits and environmental protection issues, 30% is the optimal value for the CCV opening.  相似文献   

5.
利用Fluent软件对1台900 MW四角切圆燃烧锅炉在不同负荷下炉内燃烧过程进行了数值模拟,分析了负荷变化对炉内流动和传热的影响规律.结果表明:在高负荷工况下运行时,炉内燃烧充分且稳定,但是炉内火焰更容易冲刷水冷壁,可能发生局部结渣现象;在低负荷工况下运行时,炉内火焰充满度较差,切圆燃烧的稳定性显著下降,炉膛水冷壁灰污表面温度也相应降低,水冷壁表面结渣的倾向弱化,沿高度方向水冷壁吸热不均匀性增大.由于该锅炉的低NOx燃烧器采用了分离燃尽风,使得高温区扩展,火焰中心高度比采用有关标准推荐的方法计算所得结果高4~5 m.  相似文献   

6.
Environmental concerns and depletion in petroleum resources have forced researchers to concentrate on finding renewable alternatives to conventional petroleum fuels. Hydrogen is thought to be a major energy resource of the future due to its clean burning nature and eventual availability from renewable sources. Hydrogen is widely regarded as a promising transportation fuel because it is clean and renewable.The authors manufactured a high accuracy heavy-duty variable compression ratio single cylinder engine to investigate its performance and emissions characteristics. The test engine was run at 1400 rpm with a compression ratio of 8. Spark timing was set to MBT (minimum spark advance for best torque). This paper investigates the effects of hydrogen enriched LPG fueled engine on exhaust emission, thermal efficiency and performance.  相似文献   

7.
Full-scale experiments were performed on a 300 MWe utility boiler retrofitted with air staging. In order to improve boiler thermal efficiency and to reduce NOx emission, the influencing factors including the overall excessive air ratio, the secondary air distribution pattern, the damper openings of CCOFA and SOFA, and pulverized coal fineness were investigated. Through comprehensive combustion adjustment, NOx emission decreased 182 ppm (NOx reduction efficiency was 44%), and boiler heat efficiency merely decreased 0.21%. After combustion improvement, high efficiency and low NOx emission was achieved in the utility coal-fired boiler retrofitted with air staging, and the unburned carbon in ash can maintain at a desired level where the utilization of fly-ash as byproducts was not influenced.  相似文献   

8.
In consideration of increasing the tertiary air damper opening of a 600 MWe down-fired boiler with prior multiple-injection multiple-staging technology facilitated the coal burnout, while largely increasing the NOx emissions. Additionally, the flame kernel was greatly moved downwards, thus causing significant temperature variations in the hopper near-wall region and the water wall in the lower furnace was vulnerable to overheating. This work concentrated on the comprehensively improved multiple-injection multiple-staging technology, both 1:20 scale cold aerodynamic tests and industrial experiments were conducted to examine the effects of tertiary air damper opening on flow, combustion, NOx emissions and especially the hopper near-wall temperatures. The aerodynamic tests indicated that, on increasing the tertiary air damper opening from 40 to 70%, all the flow fields exhibit good symmetry. The tertiary air flows downwards along the hopper near-wall region, with a maximum near-wall dimensionless vertical velocity significantly increasing from 0.48 to 0.66, and accordingly, the dimensionless depth of downward airflow increases from 0.744 to 0.846. The industrial experimental results showed that, upon introducing more tertiary air, the ignition distance of fuel-rich coal/air flow shortens from 1.25 to 0.87 m. The coal burnout is enhanced, carbon in fly ash drops from 6.90 to 6.15%, while the NOx emissions slightly increase from 593 to 641 mg/m3 at 6% O2. On reducing the measuring height of hopper near-wall temperature from 9.1 to 3.3 m, the average heating rate increases from 0.44 to 0.63 °C/mm. The increased tertiary air damper opening presents an increasingly obvious cooling effect on the hopper near-wall region, with the temperature reductions around 50 °C, which is conductive to protect the water wall in the lower furnace from overheating.  相似文献   

9.
针对余热锅炉入口烟气中有机物浓度变化的情况,采用数值方法模拟了不同分层燃烧条件下余热锅炉内的燃烧特性和NOx排放规律,对锅炉喷口分层布置进行优化设计。分析了有机物质量分数分别为2.655%、5%和10%时,不同喷口层数(2层、3层和4层)和不同喷口分布位置对余热锅炉内有机物燃烧以及NOx生成的影响。根据NOx排放和余热锅炉热利用的情况,得到不同有机物浓度下各自的最优喷口布置方案。  相似文献   

10.
Industrial-scale experiments were conducted to study the effects of tertiary air declination angle (TDA) on the coal combustion and steam temperature characteristics in the first 350-MW supercritical down-fired boiler in China with the multiple-injection and multiple-staging combustion (MIMSC) technology at medium and high loads. The experimental results indicated that as the TDA increased from 0° to 15°, the overall gas temperature in the lower furnace rose and the symmetry of temperature field was enhanced. The ignition distance of the fuel-rich coal/air flow decreased. In near-burner region, the concentration of O2 decreased while the concentrations of CO and NO increased. The concentration of NO decreased in near-tertiary-air region. The carbon in fly ash decreased significantly from 8.40% to 6.45% at a load of 260 MW. At a TDA of 15°, the ignition distances were the shortest (2.07 m and 1.73 m) at a load of 210 MW and 260 MW, respectively. The main and reheat steam temperatures were the highest (557.2°C and 559.4°C at a load of 210 MW, 558.4°C and 560.3°C at a load of 260 MW). The carbon in fly ash was the lowest (4.83%) at a load of 210 MW. On changing the TDA from 15° to 25°, the flame kernel was found to move downward and the main and reheat steam temperatures dropped obviously. The change of TDA has little effect on NOx emissions(660–681 mg/m3 at 6% O2). In comprehensive consideration of the pulverized coal combustion characteristics and the unit economic performance, an optimal TDA of 15° is recommended.  相似文献   

11.
《能源学会志》2020,93(1):377-386
Because of the updated requirement on ultra-low NOx emission (<50 mg/Nm3), most of Chinese coal-fired boilers have to be operated at a low NOx combustion mode. However, for high-sulfur coal, water-cooled wall tubes probably suffer severe corrosion in such a strong reduction atmosphere. This work aims to investigate the high temperature corrosion behavior of water-cooled wall tubes inside a 300 MW boiler unit. A short length of corroded water-cooled wall tube was cut down and was analyzed by various characterization methods to further figure out the detailed corrosion mechanism. The typical corrosion products can be distinguished by blue, black and pale-green. Results showed that blue and black color products were mainly consisted of iron sulfides and iron oxides while the pale-green ones were identified as zinc sulfide. Along the radial direction, a layered structure of corrosion products can be observed. The formation of inner layer resulted from the reaction between iron oxide and hydrogen sulfide. The sulfur element displays a gradual increase trend while the Fe element gives out an opposite trend along the radially outward direction. The intermediate layer comes from the fly ash deposition and the outer layer is formed via condensation and deposition of ferrous sulfide gas on the water-cooled wall. The corrosion in this power plant is typical sulfide type for large amounts of Fe and S element were found in the corrosion products.  相似文献   

12.
结合某公司300 MW燃煤UP型直流锅炉低NOx燃烧改造实例,进行了水动力原始偏差测定。同时以70%BMCR作为基准负荷,控制包覆出口压力12 MPa,进水量632 t/h,以50%负荷与30%负荷作为校核试验,并对整个热态启动过程炉内温度状况和水动力情况进行了评述。试验结果表明,低NOx燃烧改造的燃烧系统设计可有效地保护水冷壁,并配合精细的水动力特性调整,使得UP型锅炉的水冷壁安全性大为提高。  相似文献   

13.
Coal slime has been discharged or piled up on the spot as solid waste for a long time, causing a lot of waste of resources and environmental pollution. A 75 t/h circulating fluidized bed (CFB) boiler with post-combustion technology was built for combustion of coal slime. To explore the post-combustion technology and the influences of post-combustion air speed and number of post-combustion air nozzles on combustion and original NOx emission characteristics of Yankuang Coal Slime, the experiments were carried out on a 75 t/h circulating fluidized bed industrial boiler. The experimental results showed that post-combustion technology makes the NOx original emission lower and can meet ultra-low emission requirement. Both the post-combustion air speed and the number of post-combustion air nozzles affected the post-combustion air flow. As the post-combustion air speed and the number of post-combustion air nozzles increase, NOx original emissions decreased and CO emissions increased slightly.  相似文献   

14.
分级燃烧是行之有效的降低NOx燃烧技术.文中用fluent软件对分级燃烧的不同分级风工况进行数值模拟研究,分析不同分级风比率对降低NOx效果、炉膛出口温度、飞灰含炭量的影响.  相似文献   

15.
The effect of boiler combustion regulation on NO_x emission of two 1025t/h boilers has been studied.The re-searches show that NOx emission is influenced by coal species,operation conditions,etc,and can be reduced byregulating the combustion conditions.The effect of combustion regulation on boiler efficiency has also beenchecked.  相似文献   

16.
Co-firing NH3 in coal-fired power plants is an attractive method to accelerate the pace of global decarbonization. However, the contradiction between achieving elevated temperature within the furnace and maintaining low NOx emission constrains the utilization of NH3 as fuel. In this study, 3-dimensional numerical simulations on coal/NH3 co-firing cases were conducted in a full-scale boiler for the first time. The influences of NH3 blending ratio, O2 enrichment combustion and deep air-staging technology were investigated. The results show that the burnout properties of NH3 are excellent in co-firing boiler. Higher NH3 blending ratio leads to lower temperature in the furnace. Enriching O2 concentration to 30% in the secondary air can compensate the temperature decline caused by 50% NH3 co-firing, while it brings an undesired surge in NOx concentrations. The high temperature and strong reducing atmosphere (HT&SRA) could be created by combining the O2 enrichment and deep air-staging combustion. The NO emission drops by 49.6% due to HT&SRA. Then, high flue gas temperature and low NOx emission can be achieved simultaneously. HT&SRA improves the overall exergy efficiency for 50% NH3 co-firing case from 51.65% to 51.78%. The findings open up a promising strategy for utilizing NH3 as a stationary fuel.  相似文献   

17.
A three‐dimensional computational fluid dynamics code was used to analyse the performance of 550MW pulverized coal combustion opposite a wall‐fired boiler (of IEC) at different operation modes. The main objective of this study was to prove that connecting plant measurements with three‐dimensional furnace modelling is a cost‐effective method for design, optimization and problem solving in power plant operation. Heat flux results from calculations were compared with measurements in the boiler and showed good agreement. Consequently, the code was used to study hydrodynamic aspects of air–flue gases mixing in the upper part of the boiler. It was demonstrated that effective mixing between flue gases and overfire air is of essential importance for CO reburning. From our complementary experimental‐numerical effort, IEC considers a possibility to improve the boiler performance by replacing the existing OFA nozzles by those with higher penetration depth of the air jets, with the aim to ensure proper mixing to achieve better CO reburning. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In order to alleviate the contradictions of increasingly prominent environmental pollution, greenhouse gas emissions and oil resource security issues, the search for renewable and clean alternative energy sources is getting more and more attention. Hydrogen energy is known as a future energy source because of its safety, reliability, wide range of resources and non-polluting products. Hydrogen internal combustion engine combines the technical advantages of traditional internal combustion engines and has comprehensive comparative advantages in terms of manufacturing cost, fuel adaptability and reliability. It is one of the practical ways to realize hydrogen energy utilization. In this paper, the combustion characteristics and NOx emission of a turbocharged hydrogen engine were investigated using the test data. The results showed the combustion duration (the crank angle of 10%–90% fuel burned) at 1500 rpm and 2000 rpm was equal and the combustion duration is much bigger than the other loads when the BMEP is 0.27 MPa. The reason is the effect of the turbocharger on the gas exchange process, which will influence the combustion process. The cylinder pressure and pressure rise rate were also investigated and the peak pressure rise rate was lower than 0.25 MPa/°CA at all working conditions. Moreover, the NOx emission changed from 300 ppm to 1200 ppm with engine speed increasing and the maximum value can reach to 7000 ppm when the equivalence ratio is 0.88 at 2500 rpm, maximum brake torque. The NOx emission shows different changing tendencies with different working conditions. Finally, these conclusions can be used to develop controlling strategies to solve the contradictions among power, brake thermal efficiency and NOx emission for the turbocharged hydrogen internal combustion engines.  相似文献   

19.
Bulk graphene was prepared by the method of magnesium combustion in a CO2 atmosphere, producing large quantities of material which had a different morphology and importantly, a more ordered carbon lattice than reduced graphene oxide and other bulk graphene synthetic methodologies. Despite a low surface area of 235.5 m2/g and ca 9 at.% of magnesium and its oxides which do not contribute to hydrogen adsorption, we observe 0.85 wt.% of H2 at 65 bar and 77 K, and 0.9 wt.% of H2 at 300 bar and 293 K. As this methodology readily produces many-gram quantities with cheap starting materials, we anticipate that with further enhancements to the synthetic methodology, improving both surface area and reducing reaction by-products, this material will provide a robust platform for further H2 adsorption investigations.  相似文献   

20.
Methane/hydrogen combustion represents a concrete solution for the energy scenario to come. Indeed, the addition of hydrogen into the natural gas pipeline is one of the solutions foreseen to reduce CO2 emissions. Nevertheless, the replacement of methane by hydrogen will enhance the reactivity of the system, increasing NOx emissions. To overcome this issue, non-conventional combustion technologies, such as flameless combustion represent an attractive solution. This study aims to improve our understanding of the behaviour of methane/hydrogen blends under flameless conditions by means of experiments and simulations. Several experimental campaigns were conducted to test fuel flexibility for different methane/hydrogen blends, varying the injector geometries, equivalence ratio and dilution degree. It was found that a progressive addition of hydrogen in methane enhanced the combustion features, reducing the ignition delay time and loosing progressively the flameless behaviour of the furnace. Reducing the air injector diameter or increasing the fuel lance length were found to be efficient techniques to reduce the maximum temperature of the system and NOx emissions in the exhausts, reaching values below 30 ppm for pure hydrogen. MILD conditions were achieved up to 75%H2 in molar fraction, with no visible flame structures. Additionally, RANS-based simulations were also conducted to shed further light on the effect of adding hydrogen into the fuel blend. A sensitivity study was conducted for three different fuel blends: pure methane, an equimolar blend and pure hydrogen. The effect of chemistry detail, mixing models, radiation modeling and turbulence models on in-flame temperatures and NOx emissions was also studied. In particular, it was found that the usage of detailed chemistry for NOx, coupled with an adjustment of the PaSR model, filled the gap between experiments and predictions. Finally, a brute-force sensitivity revealed that NNH is the most important route for NOx production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号