首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel LiAl5−xZnxO8−0.5x microwave dielectric ceramics were synthesized through a solid-state reaction route. Phase evolution of LiAl5−xZnxO8−0.5x was determined by XRD analysis. The XRD results indicated that the phase compositions had a P4332 space group when 0 ≤ x ≤ 0.2 and a spinel structure when 0.3 ≤ x ≤ 0.5. The dielectric constant (εr) of this series’ solid solutions decreased with the increase in Zn doping content, which was in good agreement with the Clausius-Mossotti relation. Oxygen vacancy and the decreased degree of order degraded the quality factor (Q × f) of the two structures. The deterioration in quality factor was further verified by impedance spectroscopy. The temperature coefficient of the resonant frequency (τf) decreased with the increase in x and was correlated with the unit cell volume. Finally, CaTiO3 was used as a compensation material to obtain a near-zero τf of the LiAl5O8 ceramic.  相似文献   

2.
A study was conducted of the effect of additions of samarium oxide on the thermal expansion and thermal conductivity of zirconium oxide for thermal barrier coatings. SmxZr1?xO2?x/2 (0.1  x  0.5) ceramic powders synthesized with a chemical-coprecipitation and calcination method were sintered at 1873 K for 15 h. Structures of the synthesized powders and sintered ceramics were identified by X-ray diffractometer. The morphologies of ceramic powders were observed by transmission electron microscope. The thermal expansion coefficients and thermal diffusion coefficients of SmxZr1?xO2?x/2 ceramics were studied with a high-temperature dilatometer and a laser flash diffusivity technique from room temperature to 1673 K. The thermal conductivity was calculated from thermal diffusivity, density and specific heat of bulk ceramics. Sm0.1Zr0.9O1.95 ceramics consists of both monoclinic and tetragonal structures. However, Sm0.2Zr0.8O1.9 and Sm0.3Zr0.7O1.85 ceramics only exhibit a defect fluorite structure. Sm0.4Zr0.6O1.8 and Sm0.5Zr0.5O1.75 ceramics have a pyrochlore-type lattice. With the increase of Sm2O3 content, the linear thermal expansion of SmxZr1?xO2?x/2 ceramics increases except for Sm0.1Zr0.9O1.95. The thermal conductivities of SmxZr1?xO2?x/2 ceramics ranged from 1.41 at 873 K to 1.86 W m?1 K?1 at room temperature in a test temperature range of room temperature to 1673 K, and the results can be explained by phonon scattering mechanism.  相似文献   

3.
A new series of rare earth solid solutions Yb2?xLaxW3O12 were successfully synthesized by the solid-state method. Effects of substituted ion lanthanum on the microstructures and thermal expansion properties in the resulting Yb2?xLaxW3O12 ceramics were investigated by X-ray diffraction (XRD), thermogravimetric analyzer (TGA), field emission scanning electron microscope (FESEM) and thermal mechanical analyzer (TMA). Results indicate that the structural phase transition of the Yb2?xLaxW3O12 changes from orthorhombic to monoclinic with increasing substituted content of lanthanum. The pure phases can form in the composition range of 0  x < 0.5 with orthorhombic structure and 1.5 < x  2 with monoclinic one. High lanthanum content leads to a low hygroscopicity of Yb2?xLaxW3O12. Negative thermal coefficients of the Yb2?xLaxW3O12 (0  x  2) also vary from ?7.78 × 10?6 K?1 to 2.06 × 10?6 K?1 with increasing substituted content of lanthanum.  相似文献   

4.
A series of Zr1-xNd xO2-x/2 (0  x  1) ceramics was prepared by solid-state reaction method. The effects of Nd content on the phase evolution were investigated. The chemical durability of resulting waste forms was also examined. The results show that the ceramics with x < 0.1 show monoclinic and cubic zirconia phase, with 0.2  x < 0.4 exhibit a single cubic phase, with 0.4  x  0.6 exhibit a single pyrochlore phase, with 0.6 < x < 0.8 exhibit a single cubic phase and remain cubic phases and hexagonal Nd2O3 when 0.8  x  1. The unit cell parameters of the Nd-doped zirconia samples increase as the Nd content increases. Moreover, the normalized element release rates of Nd element in Nd-doped zirconia ceramics firstly decrease with leaching time and almost no change after 21 days (∼0−6 g m−2 d−1), demonstrating its good chemical durability.  相似文献   

5.
Nanoparticles of Co0.5Zn0.5AlxFe2?xO4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) were synthesized by sol–gel method and the influence of Al3+ doping on the properties of Co0.5Zn0.5Fe2O4 was studied. X-ray diffraction studies revealed the formation of single phase spinel type cubical structure having space group Fd-3m. A decreasing trend of the lattice parameter was observed with increasing Al3+ concentration due to the smaller ionic radii of Al3+ ion as compared to Fe3+ ion. TEM was used to characterize the microstructure of the samples and particle size determination, which exhibited the formation of spherical nanoparticles. The particle size was found to be increases up to ~45 nm after annealing the sample at 1000 °C. Electrical resistivity was found to increase with Al3+ doping, attributed to the decrease in the number of Fe2+–Fe3+ hopping. The activation energy decreased with increasing Al3+ ion concentration, indicating the blocking of conduction mechanism between Fe3+–Fe2+ ions. The value of saturation magnetization decreased, when Fe3+ ions were doped with Al3+ ions in Co0.5Zn0.5Fe2O4; however, the coercivity values increased with increasing Al3+ ion content.  相似文献   

6.
The structure stability of double perovskite ceramics – Ba2Mg1?xCaxWO6 (0.0  x  0.15) has been studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Raman spectrometry in this paper. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results show that small amount of Ca substitution for Mg increases the Mg/CaO bond strength, and hence the stability of the double perovskite. But it cannot completely suppress the decomposition of Ba2Mg1?xCaxWO6 at high temperature. Although space group Fm?3m is adopted for all compositions, nonrandom distribution of Ca2+ and Mg2+ on 4b-site within the short range scale is observed due to their large cation size difference. Small level doping of Ca (x  0.1) increases the dielectric permittivity monotonically, but does not affect the Q × f value greatly. As expected, the substitution of Ca tuned the temperature coefficient of resonant frequency (τf value) from negative to positive value. Excellent combined microwave dielectric properties with ?r = 20.8, Q × f = 120,729 GHz, and τf = 0 ppm/°C could be obtained for x = 0.1 composition. However the Q × f value degrades considerably when the sample was stored under ambient conditions for a long time.  相似文献   

7.
The aim of this work was to study the relationship between the crystalline structure, the mixed ionic–electronic conductivity and the calcium content in calcium-doped lanthanum manganites (CLM, La1?xCaxMnO3) synthesized by reactive ball milling. Mechanosynthesis was employed to produce nanocrystalline CLM with varying calcium content (x = 0–0.8 in increments of 0.1). Powders of Mn2O3, La2O3 and CaO mixed in the stoichiometric ratio were used as raw materials. The mechanosynthesis was carried out using a high-energy shaker mixer/mill. X-ray powder diffraction and Rietveld refinement were used to determine the crystalline structure as a function of calcium content. The four-point probe resistivity test was used to measure the electrical resistivity of the compacted and sintered powders using a DC milli-ohm meter. The results showed that the substitution of the La3+ ion by the Ca2+ ion during mechanosynthesis only changed the lattice parameters but not the orthorhombic Pnma structure. The mixed ionic–electronic conductivity increased with the Ca2+ content. The best conductivity was observed for the composition of La0.2Ca0.8MnO3.  相似文献   

8.
Microstructural changes due to kinetic demixing within sintered BSCF ceramics (Ba0.5Sr0.5CoxFe1?xO3?δ, x = 0.2 and 0.8: BSCF5528 and BSCF5582, respectively) have been investigated. When the specimens were subjected to 2 A/cm2 at 1000 °C and pO2 = 10?5 atm, there was a significant enhancement of grain growth as well as 2nd phase formation observed in BSCF5528. At the anode, cobalt deficient aggregates within the grains; and, at the cathode, cobalt rich 2nd phase particles were observed on the grain surfaces of the microstructure. Such phenomena were not observed in BSCF5582, even under higher current density (7 A/cm2) and longer delay time. These results were explained by the kinetic demixing/decomposition.  相似文献   

9.
Sr2[Ti1−x(Al0.5Nb0.5)x]O4 (x = 0, 0.10, 0.25, 0.30, 0.5) ceramics were synthesized by a standard solid-state reaction process. Sr2[Ti1−x(Al0.5Nb0.5)x]O4 solid solutions with tetragonal Ruddlesdon-Popper (R-P) structure in space group I4/mmm were obtained within x ≤ 0.50, and only minor amount (1-2 wt%) of Sr3Ti2O7 secondary phase was detected for the compositions x ≥ 0.25. The temperature coefficient of resonant frequency τf of Sr2[Ti1−x(Al0.5Nb0.5)x]O4 ceramics was significantly improved from 132 to 14 ppm/°C correlated with the increase in degree of covalency (%) with increasing x. The dielectric constant ɛr decreased linearly with increasing x, while high Qf value was maintained though it decreased firstly. The variation tendency of Qf value was dependent on the trend of packing fraction combined with the microstructure. Good combination of microwave dielectric properties was achieved for x = 0.50: ɛr = 25.1, Qf = 77 580 GHz, τf = 14 ppm/°C. The present ceramics could be expected as new candidates of ultra-high Q microwave dielectric materials without noble element such as Ta.  相似文献   

10.
In this study, magnesium-zirconium–substituted M-type barium hexaferrites BaFe12-2xMg+xZrxO19 (BFMZO, 0.25 ≤ x ≤ 1.5) nanoparticles were successfully synthesized by sol-gel autocombustion technique. On one hand, the effects of Mg-Zr substitution concentration on the magnetic features of doped magnetic nanoparticles were investigated which showed that increasing the doping concentration causes the saturation magnetization to decrease. On the other hand, the influence of the different layer thicknesses (2, 3, and 4 mm) of BFMZO on the microwave absorption was investigated in X-band frequencies (8-12 GHz). Absorption results showed that increasing the film thickness from 2 to 3 mm causes microwave absorption to increase. Moreover, the morphological study reveals that aggregation percentage decreased when the substitution concentration increased. Therefore, size, magnetic, and absorption properties are tunable by substitution concentration.  相似文献   

11.
A series of copper thiospinel compounds, CuCo2S4-xSex (x = 0, 0.2, 0.4, 0.6, 0.8), have been successfully synthesized by solid-state reaction and their structure and magnetic properties have been studied. The Rietveld refinements of X-ray diffractions indicate that both the lattice constants and the nearest-neighbor Cu-Cu distances increase with increasing selenium doping. A weakly antiferromagnetic transition occurring at about 4 K is observed in CuCo2S4. Two antiferromagnetic transitions at about 3.5 K and 6 K are observed in selenium-doped samples, which suggest that the exchange couplings associated with Cu-S(Se)-Cu and Cu-Se(S)-Cu, respectively, are responsible for the two antiferromagnetic transitions. Detailed analysis of the experimental results further indicates that the nearest-neighbor molecular field coefficient is comparable to the next-neighbor molecular field coefficient. We propose a reasonable model to explain this phenomenon.  相似文献   

12.
Novel scheelite-type [Ca0.55(Nd1-xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) ceramics were prepared using the solid-state reaction method. According to the X-ray diffraction data, a solid solution was formed in 0.2 ≤ x ≤ 0.95 and all the samples belong to pure scheelite phase with the tetragonal structure. As revealed by Raman spectroscopy, the number of vibrational modes decreased with the increase in x value, which further indicated that Bi3+ ions occupied A-site of scheelite structure. As the x value increased, the sintering temperature decreased from 740°C to 660°C; the permittivity increased from 12.6 to 20.3; the Qf value first decreased slightly and gradually remained stable. Based on the infrared reflectivity spectrum analysis, the calculated permittivity derived from the fitted data shared the same trend with the measured value. The [Ca0.55(Nd0.05Bi0.95)0.3]MoO4 ceramic sintered at 660 °C attained a near-zero value temperature coefficient ~τf (−7.1 ppm/°C) and showed excellent microwave dielectric properties with a ɛr ~ 20.3 and a Qf ~ 33 860 GHz, making this system a promising candidate in the ultralow temperature cofired ceramic (ULTCC) technology.  相似文献   

13.
The structural evolution and microwave dielectric properties of (1 ? x)Li2TiO3 + xMgO system (0  x  0.5) have been investigated in this paper. The ordering degree decreased with the increase of MgO content. The microcracks and cleavage on (0 0 1) due to the weak Li–O bonds disappeared with the increase of MgO content. The dielectric constant and temperature coefficient of resonant frequency decreased with the increase of MgO content. The Q × f value increased with x up to x = 0.2 and then decreases with the further increase of x. An excellent combined microwave dielectric properties could be obtained when x = 0.24, ?r = 19.2, Q × f = 106,226 GHz and τf = 3.56 ppm/°C.  相似文献   

14.
The Li1+xAlxTi2?x(PO4)3 (LATPx) series displays the highest “bulk” reported conductivity, but a much lower “overall” contribution, that changes with the powder preparation and sintering conditions. In this work, the preparation of LATPx ceramics is discussed, by using the sol-gel technique for powders synthesis and mild spark plasma (SPS) for ceramics sintering at 800 °C. An “overall” conductivity ~ 2.10?3 Ω?1 cm?1 was obtained for the x = 0.4 composition, that was the result of a high “bulk” conductivity, an optimized microstructure and almost full density, in absence of micro-cracks, with a small content of secondary phases and clean grain boundaries. Fast-ion ceramics prepared by SPS are good candidates for solid electrolytes in all solid state batteries (ASSB).  相似文献   

15.
Ce1?xGdxO2?x/2 (GDC) powders with different Gd3+ contents (x = 0.05–0.3) were prepared by a simple citrate–nitrate combustion method. The influence of the Gd3+ doping content on the crystal structure and the electrical properties of GDC were examined. Many analysis techniques such as thermal analysis, X-ray diffraction, nitrogen adsorption analysis, scanning electron microscopy and AC impedance analysis were employed to characterize the GDC powders. The crystallization of the GDC solid solution occurred below 350 °C. The GDC powders calcined at 800 °C showed a typical cubic fluorite structure. The lattice parameter of GDC exhibited a linear relationship with the Gd3+ content. As compared with that sintered at other temperatures, the GDC pellet that sintered at 1300 °C had a high relative density of 97%, and showed finer microstructure. The conductivity of GDC was firstly increased and then decreased with the increase of the Gd3+ content. The sintered GDC sample with the Gd3+ content of 0.25 exhibited the highest conductivity of 1.27 × 10?2 S cm?1 at 600 °C.  相似文献   

16.
A novel system Li3Mg2(Nb(1−x)Mox)O6+x/2 (0 ≤ x ≤ 0.08) microwave dielectric ceramics were fabricated by the solid-state method. The charge compensation of Mo6+ ions substitution for Nb5+ ions was performed by introducing oxygen ions. The X-ray diffraction patterns and Rietveld refinements indicated Li3Mg2(Nb(1−x)Mox)O6+x/2 ceramics with single phase and orthorhombic structure. Micro-structure and density confirmed that the grain of Li3Mg2(Nb(1-x)Mox)O6+x/2 ceramics grew well. In addition, the permittivity of Li3Mg2(Nb(1−x)Mox)O6+x/2 ceramics with the same trend as density decreased slightly with increasing Mo6+ ions content. However, the Q*f and τf were obviously improved with an appropriate amount of Mo6+ ions. When x ≤ 0.04, the Q*f was closely related to the bond valence of samples, while when x ≥ 0.06, the Q*f was closely related to the density of samples. The variations of τf and oxygen octahedral distortion were the opposite. In conclusions, the Li3Mg2(Nb0.98Mo0.02)O6.01 ceramic sintered at 1200°C for 6 hours exhibited outstanding properties: εr ~ 15.18, Q*f ~ 116 266 GHz, τf ~ −15.71 ppm/oC.  相似文献   

17.
Structural and optical properties of Mg1−xMnxP2O6 (x = 0–1.0) magnesium metaphosphate were investigated in detail. The complete solid solution of MgP2O6–MnP2O6 is confirmed as monoclinic space group C2/c. The dynamic luminescence was studied by changing the Mn2+ content (0–100 mol%) and temperature (10–300 K). There is a good chemical homogeneity in Mg1−xMnxP2O6 (x = 0–1.0), which can be supported by the linearly varying cell size and the gradually changing vibration spectrum. However, the optical properties of the solid solution do not show a continuous change trend, that is, an obvious inflection point appeared when x = 0.5. Mg1−xMnxP2O6 (x = 0.1–0.5) shows a dominant O2− → Mn2+ charge transfer (CT) absorption in the near UV region and feeble d–d transitions of Mn2+ in visible wavelength region. However, Mg1−xMnxP2O6 (x = 0.6–1.0) presents a strong d–d absorption transition and nearly disappeared CT band. The changing trend of optical absorption is also maintained in the excitation and emission of the solid solutions. In Mg1−xMnxP2O6 (x = 0.1–0.5), (Mn, Mg)O6 octahedron has slight distortion, and the effective luminescence only occurs when CT band excitation is used. In contrast, in Mg1−xMnxP2O6 (x = 0.6–1.0), (Mn, Mg)O6 octahedron is highly distorted, and only excitation at d–d transition produces effective luminescence. This research highlights the critical role of MnO6 octahedral distortions in the luminescence properties of Mn2+ activators. The research provides a reference for developing optical materials.  相似文献   

18.
SrLa[Ga1−x(R0.5Ti0.5)x]O4 (R = Mg, Zn) ceramics were prepared by a standard solid state sintering method. The single-phase ceramics with K2NiF4-type layered perovskite structure and I4/mmm space group were obtained, indicating that SrLa(R0.5Ti0.5) and SrLaGaO4 can form the unlimited solid solutions. With increasing x for = Mg and Zn, εr increases monotonously, the Qf value first increases and then decreases, while τf increases from a negative to a positive value. The optimized microwave dielectric properties were obtained as following: εr = 23.3, Qf = 89 400 GHz, τf = −0.8 ppm/°C for SrLa[Ga0.6(Mg0.5Ti0.5)0.4]O4 and εr = 23.3, Qf = 76 200 GHz, τf = 0.2 ppm/°C for SrLa[Ga0.7(Zn0.5Ti0.5)0.3]O4, indicating that the present solid solution ceramics are the promising candidates as microwave resonator materials for the telecommunication applications.  相似文献   

19.
The pervoskite-type oxides have received attention due to their potential applications in catalysis, fuel cells, sensors, gas separable membranes, and electrolytes. In view of the importance of oxygen separation from air, stable Ba0.5Sr0.5Al0.2−xMgxFe0.8O3−ξ (x = 0–0.2) powders have been synthesized by decomposition of sol–gel derived oxalate at 950 °C for 5 h and characterized with regard to formation, nature of iron species, oxygen permeation, and electrical conductivity. It is shown that magnesium substitution leads to (i) a stable perovskite-type cubic phase with ‘a = 3.953–3.978 Å, (ii) weakening of metal–oxygen bond, (iii) reduction of Fe4+ ions, and (iv) enhancement of oxygen deficiency and electrical conductivity. Their compact discs act as stable oxygen permeable filters with flux density of ∼3.013–3.355 μmol cm−2 s−1 at 1000 °C. The maximum value corresponds to composition x = 0.2 and hence can be a potential membrane for oxygen separation technology.  相似文献   

20.
Novel polycrystalline Ni0.5Zn0.5Sm0.025HoxFe1.975−xO4 (x = 0-0.06) ferrites were fabricated by a traditional solid-state reaction sintering method. The codoping effects of Sm and Ho on the microstructure, magnetism, and high-frequency performance of Ni–Zn ferrites were investigated. The substitution of Sm3+ and Ho3+ ions led to an apparent increase in the lattice constants. However, further increasing the addition of both dopants introduced SmFeO3 or HoFeO3 foreign phases at the boundaries of the polycrystalline grains. As the content of Ho3+ ions increased, the relative density and average grain size of the specimens decreased accordingly. Moreover, the substitution of Sm3+ clearly decreased the saturation magnetization and complex permeability, which further decreased with the doping of Ho3+. The evolution of the Curie temperature showed an opposite trend, reaching the highest temperature of 278°C when x = 0.03. Similarly, the coercivity and resonance frequencies also displayed opposite trends compared to those of the saturation magnetization and complex permeability. The codoping of Sm3+ and Ho3+ more effectively lowered the magnetic and dielectric loss tangent of the specimens compared with the undoped or single dopant modified ferrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号