共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
本文针对固相反应组份不均匀性影响高温煤气脱硫剂性能和商业成本的缺陷,研究在反应物以液相混合,用沉淀法制备Zn-Ti高温煤气脱硫剂,克服了上述缺点,使脱硫活性提高。 相似文献
7.
8.
ZnFe2O4高温煤气脱硫剂的再生 总被引:1,自引:0,他引:1
在热天平上对自制的ZnFe2O4脱硫剂进行了再生工艺研究,考察了再生温度、O2浓度对ZnFe2O4脱硫剂再生性能的影响;进行了多次硫化、再生循环实验,并与加入玻璃粉的样品进行了比较。结果表明,700℃下氧含量2.0%(vol)时再生可以获得良好的再生率和二次硫化反应活性;玻璃粉的少量加入,会改善脱硫剂长期使用的稳定性,但反应活性有所下降。 相似文献
9.
10.
11.
12.
Desulfurization of natural gas is achieved commercially by absorption with liquid amine solutions. Adsorption technology could potentially replace the solvent extraction process, particularly for the emerging shale gas wells with production rates that are generally lower than that from the large conventional reservoirs, if a superior adsorbent (sorbent) is developed. In this review, we focus our discussion on three types of sorbents: metal-oxide based sorbents, Cu/Ag-based and other commercial sorbents, and amine-grafted silicas. The advantages and disadvantages of each type are analyzed. Possible approaches for future developments to further improve these sorbents are suggested, particularly for the most promising amine-grafted silicas. 相似文献
13.
T305型脱硫剂在半水煤气脱硫中的应用 总被引:1,自引:0,他引:1
介绍了T305型脱硫剂在半水煤气脱硫中的应用,并分析了脱硫床层吸硫分布曲线及脱硫剂的利用率,说明该脱硫剂对CO含量较高的半水煤气仍能达到较理想的脱硫效果。 相似文献
14.
Although a number of reports on sorbents containing ZnO for H2S removal from coal-derived gases can be found in the literature, it is shown in our study that a special sorbent containing Fe2O3·FeO (SFO) with minor promoters (Al2O3, K2O, and CaO) as the main active species is more attractive for both sulfidation and regeneration stages, also under economic considerations. This paper presents the kinetic behaviour of SFO in a hot gas desulfurization process using a thermogravimetric analysis under isothermal condition in the operating range between 500 and 800 °C. The gas stream was N2 with a 2% wt of H2S. Experiences carried out on sorbent sulfidation with SFO (particle sizes in the range of 0.042-0.12 mm) indicate that the sorbent sulfidation capacity sharply increases with temperature in the range of 500-600 °C. It is also shown that the sample weight reaches its maximum absorption capacity, near saturation, at 600 °C so that it makes no sense to increase the sulfidation temperature from this point. To make a comparison between SFO and a zinc titanate based sorbent, a set of sulfidation tests was carried out at 600 °C during 7200 s using the same sieve range for both sorbents between 42 and 90 μm. Results show that the sulfidation capacity of SFO is 1.9 times higher than that of zinc titanate. 相似文献
15.
16.
活性炭担载金属氧化物用于热煤气脱硫 总被引:2,自引:0,他引:2
以热煤气脱硫并回收单质硫为目的,考察了活性炭担载金属氧化物(M/AC)在中温范围150—250℃内,催化氧化硫化氢生成单质硫的研究。担载量1%(质量分数)的M/AC通过等体积浸渍法制得,在固定床上评价了其脱硫活性,并考察了温度、反应气氛等工艺条件对脱硫效果的影响。M/AC脱硫的活性顺序为:Mn/ACCu/ACCe/ACFe/ACCo/ACV/AC。通过DTG分析,硫化氢选择性氧化的主要产物是单质硫。M/AC上金属氧化物起主要的催化作用,催化硫化氢和氧气反应生成单质硫,生成的单质硫被吸附在活性炭的孔道中。 相似文献
17.
A sodium–zinc sorbent based flue gas desulfurization technology (Na–Zn-FGD) was proposed based on the experiments and analyses of the thermal decomposition characteristics of CaSO3 and ZnSO3·2.5H2O, the waste products of calcium-based semi-dry and zinc-based flue gas desulfurization (Ca–SD-FGD and Zn–SD-FGD) tech-nologies, respectively. It was found that ZnSO3·2.5H2O first lost crystal H2O at 100 °C and then decomposed into SO2 and solid ZnO at 260 °C in the air, while CaSO3 is oxidized at 450 °C before it decomposed in the air. The ex-perimental results confirm that Zn–SD-FGD technology is good for SO2 removal and recycling, but with problem in clogging and high operational cost. The proposed Na–Zn-FGD is clogging proof, and more cost-effective. In the new process, Na2CO3 is used to generate Na2SO3 for SO2 absorption, and the intermediate product NaHSO3 reacts with ZnO powders, producing ZnSO3·2.5H2O precipitate and Na2SO3 solution. The Na2SO3 solution is clogging proof, which is re-used for SO2 absorption. By thermal decomposition of ZnSO3·2.5H2O, ZnO is re-generated and SO2 with high purity is co-produced as well. The cycle consumes some amount of raw material Na2CO3 and a small amount of ZnO only. The newly proposed FGD technology could be a substitute of the traditional semi-dry FGD technologies. 相似文献
18.
This paper introduced two new zinc-based sorbents for hot gas desulfurization, G-201 and G-202. Evaluation tests proved that both G-201 and G-202 sorbents had good performance in desulfurization. They could reduce H2S concentration from about 10 g/m3 in coal gas to less than 20 mg/m3. In addition, the sulfur capacity of both sorbents increased with temperature rising. No decrease in sulfur capacity of G-201 occurred during 20-desulfurization/regeneration cycle tests, whose calculated value was 19.43–24.23 g/100 g sorbent. G-201 sorbent passed a 1500 h real hot gas desulfurization test in a fixed-bed PDU. No occurence of striping, attrition and sintering on the surface of used sorbents was found after the long-time test. The reactivity was stable and the sulfur capacity is 21.19 g/100 g sorbent after the 1500 h test. 相似文献