首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in full stroke cycles are captured in the simulation. Significant asymmetry is observed for lift production within a stroke cycle. In particular, the downstroke generates about 2.5 times as much vertical force as the upstroke, a result that confirms the estimate based on the measurement of the circulation in a previous experimental study. Associated with lift production is the similar power imbalance between the two half strokes. Further analysis shows that in addition to the angle of attack, wing velocity and surface area, drag-based force and wing–wake interaction also contribute significantly to the lift asymmetry. Though the wing–wake interaction could be beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is buried by other opposing effects, e.g. presence of downwash. The leading-edge vortex is stable during the downstroke but may shed during the upstroke. Finally, the full-body simulation result shows that the effects of wing–wing interaction and wing–body interaction are small.  相似文献   

2.
Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle''s wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency.  相似文献   

3.
Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.  相似文献   

4.
We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots.  相似文献   

5.
In this study, variational principle is used for dynamic modeling of an Ionic Polymer Metal Composite (IPMC) flapping wing. The IPMC is an Electro-active Polymer (EAP) which is emerging as a useful smart material for `artificial muscle' applications. Dynamic characteristics of IPMC flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. A comparative study of the performances of three IPMC flapping wings is conducted. Among the three species, it is found that thrust force produced by the IPMC flapping wing of the same size as Anax Parthenope Julius wing is maximum. Lift force produced by the IPMC wing of the same size as Sympetrum Frequens wing is maximum and the wing is suitable for low speed flight. The numerical results in this paper show that dragonfly inspired IPMC flapping wings are a viable contender for insect scale flapping wing micro air vehicles.  相似文献   

6.
Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects'' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect.  相似文献   

7.
Insect wings are hybrid structures that are typically composed of veins and solid membranes. In some of the smallest flying insects, however, the wing membrane is replaced by hair-like bristles attached to a solid root. Bristles and membranous wing surfaces coexist in small but not in large insect species. There is no satisfying explanation for this finding as aerodynamic force production is always smaller in bristled than solid wings. This computational study suggests that the diversity of wing structure in small insects results from aerodynamic efficiency rather than from the requirements to produce elevated forces for flight. The tested wings vary from fully membranous to sparsely bristled and were flapped around a wing root with lift- and drag-based wing kinematic patterns and at different Reynolds numbers (Re). The results show that the decrease in aerodynamic efficiency with decreasing surface solidity is significantly smaller at Re = 4 than Re = 57. A replacement of wing membrane by bristles thus causes less change in energetic costs for flight in small compared to large insects. As a consequence, small insects may fly with bristled and solid wing surfaces at similar efficacy, while larger insects must use membranous wings for an efficient production of flight forces. The above findings are significant for the biological fitness and dispersal of insects that fly at elevated energy expenditures.  相似文献   

8.
In closed-loop systems, sensor feedback delays may have disastrous implications for performance and stability. Flies have evolved multiple specializations to reduce this latency, but the fastest feedback during flight involves a delay that is still significant on the timescale of body dynamics. We explored the effect of sensor delay on flight stability and performance for yaw turns using a dynamically scaled robotic model of the fruitfly, Drosophila. The robot was equipped with a real-time feedback system that performed active turns in response to measured torque about the functional yaw axis. We performed system response experiments for a proportional controller in yaw velocity for a range of feedback delays, similar in dimensionless timescale to those experienced by a fly. The results show a fundamental trade-off between sensor delay and permissible feedback gain, and suggest that fast mechanosensory feedback in flies, and most probably in other insects, provide a source of active damping which compliments that contributed by passive effects. Presented in the context of these findings, a control architecture whereby a haltere-mediated inner-loop proportional controller provides damping for slower visually mediated feedback is consistent with tethered-flight measurements, free-flight observations and engineering design principles.  相似文献   

9.
The motion of a two-dimensional flag at a time-dependent angle of incidence to an irrotational flow of an inviscid, incompressible fluid is examined. The flag is modelled as a thin, flexible, impermeable membrane of finite mass with bending stiffness. The flag is fixed at the leading edge where it is assumed to be either freely hinged or clamped with zero gradient. The angle of incidence to the outer flow is assumed to be small and thin aerofoil theory and simple beam theory are employed to obtain a partial singular integro-differential equation for the flag shape. Steady solutions to the problem are calculated analytically for various limiting cases and numerically for order one values of a non-dimensional parameter that measures the relative importance of outer flow momentum flux and flexural rigidity. For the unsteady problem, the stability of steady solutions depends only upon two non-dimensional parameters. Stability analysis is performed in order to identify the regions of instability. The resulting quadratic eigenvalue problem is solved numerically and the marginal stability curves for both the hinged and the clamped flags are constructed. These curves show that both stable and unstable solutions may exist for various values of the mass and flexural rigidity of the membrane and for both methods of attachment at the leading edge. In order to confirm the results of the linear stability analysis, the full unsteady flag equation is solved numerically using an explicit method. The numerical solutions agree with the predictions of the linear stability analysis and also identify the shapes that the flag adopts according to the magnitude of the flexural rigidity and mass.  相似文献   

10.
Numerical simulation using low diffusion schemes, for example free‐vortex or vorticity transport methods, and theoretical stability analyses have shown the wakes of rotors in hover to be unsteady. This has also been observed in experiments, although the instabilities are not always repeatable. Hovering rotor wake stability is considered here using a finite‐volume compressible CFD code. An implicit unsteady, multiblock, multigrid, upwind solver, and structured multiblock grid generator are presented, and applied to lifting rotors in hover. To allow the use of very fine meshes and, hence, better representation of the flow physics, a parallel version of the code has been developed, and parallel performance using upto 1024 CPUs is presented. A four‐bladed rotor is considered, and it is demonstrated that once the grid density is sufficient to capture enough turns of the tip vortices, hover exhibits oscillatory behaviour of the wake, even using a steady formulation. An unsteady simulation is then performed, and also shows an unsteady wake. Detailed analysis of the time‐accurate wake history shows that three dominant unsteady modes are captured, for this four‐bladed case, with frequencies of one, four, and eight times the rotational frequency. A comparison with theoretical stability analysis is also presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
To date, wake measurements using particle image velocimetry (PIV) of bats in flight have studied only three bat species, all fruit and nectar feeders. In this study, we present the first wake structure analysis for an insectivorous bat. Tadarida brasiliensis, the Brazilian free-tailed bat, is an aerial hunter that annually migrates long distances and also differs strikingly from the previously investigated species morphologically. We compare the aerodynamics of T. brasiliensis with those of other, frugivorous bats and with common swifts, Apus apus, a bird with wing morphology, kinematics and flight ecology similar to that of these bats. The comparison reveals that, for the range of speeds evaluated, the cyclical pattern of aerodynamic forces associated with a wingbeat shows more similarities between T. brasiliensis and A. apus than between T. brasiliensis and other frugivorous bats.  相似文献   

12.
This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping.  相似文献   

13.
摘要:在Theodorsen二元气动力的基础上,建立非定常气动力时域内积分形式的表达式或者等价的频域表达式,利用粘弹性结构振动分析中对积分方程的等价变换将其写成与结构动力学方程一致的二阶常微分方程,将气动力的影响作为对结构有限元模型质量阵、刚度阵和阻尼阵的补充,保留了结构原有的所有动力学特性,并且能够直接用计算结构动力学的通用有限元软件进行空气-结构耦合的整体动力学分析,适合应用于具有复杂结构的气弹问题。气动力模型的建立可以利用各种试验及数值方法得到的气动力数据,适用性强。算例给出了大展弦比机翼的颤振边界计算结果。  相似文献   

14.
Beyond robins: aerodynamic analyses of animal flight   总被引:2,自引:0,他引:2       下载免费PDF全文
Recent progress in studies of animal flight mechanics is reviewed. A range of birds, and now bats, has been studied in wind tunnel facilities, revealing an array of wake patterns caused by the beating wings and also by the drag on the body. Nevertheless, the quantitative analysis of these complex wake structures shows a degree of similarity among all the different wake patterns and a close agreement with standard quasi-steady aerodynamic models and predictions. At the same time, new data on the flow over a bat wing in mid-downstroke show that, at least in this case, such simplifications cannot be useful in describing in detail either the wing properties or control prospects. The reasons for these apparently divergent results are discussed and prospects for future advances are considered.  相似文献   

15.
Aerodynamic effects of flexibility in flapping wings   总被引:1,自引:0,他引:1  
Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic insects and, to a limited extent, in understanding the aerodynamics of flapping insect wings.  相似文献   

16.
Qualitative comparison of bird and bat wakes has demonstrated significant differences in the structure of the far wake. Birds have been found to have a unified vortex wake of the two wings, while bats have a more complex wake with gradients in the circulation along the wingspan, and with each wing generating its own vortex structure. Here, we compare quantitative measures of the circulation in the far wake of three bird and one bat species. We find that bats have a significantly stronger normalized circulation of the start vortex than birds. We also find differences in how the circulation develops during the wingbeat as demonstrated by the ratio of the circulation of the dominant start vortex and the total circulation of the same sense. Birds show a more prominent change with changing flight speed and a relatively weaker start vortex at minimum power speed than bats. We also find that bats have a higher normalized wake loading based on the start vortex, indicating higher relative induced drag and therefore less efficient lift generation than birds. Our results thus indicate fundamental differences in the aerodynamics of bird and bat flight that will further our understanding of the evolution of vertebrate flight.  相似文献   

17.
Fruitflies regulate flight speed by adjusting their body angle. To understand how low-level posture control serves an overall linear visual speed control strategy, we visually induced free-flight acceleration responses in a wind tunnel and measured the body kinematics using high-speed videography. Subsequently, we reverse engineered the transfer function mapping body pitch angle onto flight speed. A linear model is able to reproduce the behavioural data with good accuracy. Our results show that linearity in speed control is realized already at the level of body posture-mediated speed control and is therefore embodied at the level of the complex aerodynamic mechanisms of body and wings. Together with previous results, this study reveals the existence of a linear hierarchical control strategy, which can provide relevant control principles for biomimetic implementations, such as autonomous flying micro air vehicles.  相似文献   

18.
文章论述了航空航天技术发展与力学学科发展的依存关系,讨论了力学学科间的交叉及交叉学科的产生,重点介绍了飞行力学与空气动力学、结构力学、一般力学、自动控制等学科间的关系,进而讨论了飞行力学的分支-弹性飞行器动力学。  相似文献   

19.
对图像导航的概念、特点做了详细的阐述.介绍了图像导航在机器人导航、导弹导航以及作为辅助导航系统的典型应用,并分析了图像导航在不同的应用领域中的特点、优点和局限性.文章对图像导航在微型飞行器导航中的应用也给出了较详细的分析.最后,对图像导航的前景和发展趋势做了预测.  相似文献   

20.
The prediction of the flutter boundary of an aircraft is a necessary but time consuming process, particularly as for the most realistic results a time accurate simulation of the interaction between the non‐linear aerodynamic and structural forces is required. Extension of the flight envelope by the design of active control laws to suppress flutter further increases the demands on computational time, to presently unrealistic levels. Use of a reduced order model (ROM) derived from, and in place of, the full non‐linear aerodynamics greatly reduces the time required for calculation of aerodynamic forces. However, this is necessarily accompanied by some loss in accuracy, and hence the method must be verified by comparison with results obtained by the full aerodynamic model before it may be used with confidence. Such a comparison is presented here, using a two‐dimensional aerofoil and control surface combination as a test case. Active control of the deflectable surface is used to attempt to increase the flutter speed across the complete Mach range, feedback control being achieved by gains acting on heave and pitch proportional and differential signals, interpreted as a hinge moment demand. Full non‐linear and reduced order aerodynamic models are then used to obtain optimum control law gain for flutter suppression. The results demonstrate that the ROM accurately predicts the open loop flutter boundary, gives a good approximation to the increase in flutter speed that may be produced by gain optimization, and produces a similar response given the identical gain values in each system for a significantly reduced cost. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号