首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
Marcasite (Fe S2) is widespread in nature,its oxidation plays a vital role in acid mine drainage,mineral resource recovery,and photoelectric material applications.In this paper,the oxidation mechanism of marcasite has been studied for the first time using density functional theory (DFT).It is found that,unlike the oxidation of pyrite,the oxidation of marcasite merely occurs at surface S atoms.Under the coexistence of water and oxygen,S atoms around surface Fe atoms are replaced by O a...  相似文献   

2.
In this paper, two surfactants, 3-dodecyloxypropanamine (DOPA) and 3-tetradecyloxypropylamine (TOPA), were synthesized and used as collectors in the quartz micro-flotation in the laboratory. Micro-flotation tests, FT-IR, XPS measurements, and ab initio Molecular Dynamics (MD) simulations were conducted to research DOPA, TOPA, and dodecylamine (DDA)'s adsorption mechanisms onto quartz (1 0 1) surfaces. The results of micro-flotation show that the adsorption of DOPA and TOPA onto quartz surface is more robust than that of DDA. The zeta-potential result shows that the DOPA/TOPA was adsorbed on quartz through electrostatic attraction. Then, MD simulation adsorption models were built to compare the computational properties of the three surfactants, such as the radial distribution function, and the interaction energies between the collectors and the quartz cleavage surface. The interaction energies of surfactants (RNH3+ or RNH2) on the quartz surface explained why the pH range of DOPA/TOPA is wider than that of DDA. XPS analyses and MD simulations confirmed that DOPA bonded with the (1 0 1) surface of quartz through three types of hydrogen bonds between the NH2 of DOPA and the O atom of quartz. The hydrogen bonds of type A and type C were the most likely type and more potent than those of type B.  相似文献   

3.
Temperature affects the flotation of quartz in the calcium/sodium oleate(NaOL)system,while there is a lack of understanding of its potential mechanism.Therefore...  相似文献   

4.
The discrete variational Xa method (DV-Xα) within the framework of density-functional theory was applied to study O2 molecule adsorption on NiTi (100) and (110) surfaces. The bond order and charge distribution between Ti and O atoms for two possible O2 molecule adsorption ways on NiTi (100) and (110) surfaces were calculated. It is found that the adsorption way for O−O bond perpendicular to NiTi surface is preferred to that for O−O bond parallel to NiTi surface, and O2 molecule only interacted with one nearest surface titanium atom during the adsorption process. Mulliken population and the partial density of state analysis show that the interaction between Ti and O atoms is mainly donated by O 2p and Ti 4s electrons on NiTi(110) surface, O 2p and Ti 4s, 4p electrons on NiTi(100) surface, respectively. The total density of state analysis shows that NiTi(100) surface is more favorable for O2 molecule adsorption. HUA Ying-jie: Born in 1966. Funded by the National Natural Science Foundation of China (No. 50081001)  相似文献   

5.
Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au( AsS3 )]^2- on the surface of kaolinite. The correlation among structure, chemical bond and stability was discussed. Several models were selected with [ Au( AsS3)]^2- in different directions and sites. The results show that the models with gold on the edge of kaolinite basal layer contain pincerlike bond among gold and several oxygen atoms and form strong Au - 0 covalent bond, so these models are more stable than those with gold above or under the layer. The models with gold near to [ AlO2(OH)4] octahedra are more stable than those with gold near to the vacancy withont aluminium. These two stable tendencies in kaolinite- [ Au( AsS3)]^2- are stronger than that in kaolinite-Au systems. The interaction between [ Au( AsS3 )]^2- and kaolinite is stronger than that between gold and kaolinite, and this interaction is strong enough to form the surface complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号