共查询到20条相似文献,搜索用时 15 毫秒
1.
Ki-Seok Kim Kyong-Yop Rhee Kyu-Hwan Lee Joon-Hyung Byun Soo-Jin Park 《Journal of Industrial and Engineering Chemistry》2010,16(4):572-576
In this work, the effect of multi-walled carbon nanotube (MWNT) contents on the rheological behaviors and mechanical interfacial properties of graphite nanoplate (GP)/epoxy nanocomposites was investigated. The results showed that the co-carbon fillers were homogeneously dispersed in the epoxy resins and MWNTs were intercalated into the GP layers. The storage modulus (G′) and loss modulus (G″) of the nanocomposites was increased with the addition of MWNTs. This result was accompanied by an increase in elastic properties of the nanocomposites, resulted from the higher aspect ratio of the MWNTs. And the mechanical properties of the nanocomposites were increased, as the MWNT content increased. It was noted that well dispersed MWNTs were strongly interacted with epoxy resins and worked as an effective reinforcement for the nanocomposites due to the flexible MWNTs compared with rigid GPs. 相似文献
2.
3.
4.
5.
Takashi Kashiwagi Eric Grulke Katrina Groth Kathryn Butler Semen Kharchenko 《Polymer》2004,45(12):4227-4239
The thermal and flammability properties of polypropylene/multi-walled carbon nanotube, (PP/MWNT) nanocomposites were measured with the MWNT content varied from 0.5 to 4% by mass. Dispersion of MWNTs in these nanocomposites was characterized by SEM and optical microscopy. Flammability properties were measured with a cone calorimeter in air and a gasification device in a nitrogen atmosphere. A significant reduction in the peak heat release rate was observed; the greatest reduction was obtained with a MWNT content of 1% by mass. Since the addition of carbon black powder to PP did not reduce the heat release rate as much as with the PP/MWNT nanocomposites, the size and shape of carbon particles appear to be important for effectively reducing the flammability of PP. The radiative ignition delay time of a nanocomposite having less than 2% by mass of MWNT was shorter than that of PP due to an increase in the radiation in-depth absorption coefficient by the addition of carbon nanotubes. The effects of residual iron particles and of defects in the MWNTs on the heat release rate of the nanocomposite were not significant. The flame retardant performance was achieved through the formation of a relatively uniform network-structured floccule layer covering the entire sample surface without any cracks or gaps. This layer re-emitted much of the incident radiation back into the gas phase from its hot surface and thus reduced the transmitted flux to the receding PP layers below it, slowing the PP pyrolysis rate. To gain insight into this phenomena, thermal conductivities of the nanocomposites were measured as a function of temperature while the thermal conductivity of the nanocomposite increases with an increase in MWNT content, the effect being particularly large above 160 °C, this increase is not as dramatic as the increase in electrical conductivity, however. 相似文献
6.
We present a general internal state variable (ISV) elastic-viscoplastic constitutive model that was initially applied to amorphous polymers (Bouvard et al J Eng Mater Technol 131(4), 041206, 2013) but has been extended to apply to semi-crystalline polymers along with a fracture criterion. In this work, we experimentally calibrated and validated the mechanical behavior of two semi-crystalline polymers (a polypropylene (PP) and a copolymer polypropylene (co-PP)) under different stress states, temperatures, and nominal strain rates. The experiments included compression, tension, impact, and three point bending tests with the notion of capturing the time, temperature, stress state dependence, and failure mechanisms under large strains. The ISV model was integrated into a finite element (FE) code and the FE simulations agreed very well with the PP and co-PP mechanical behavior under compression, impact, and three point bending thus exercising the model under different nominal strain rates, temperatures, and stress states. Two failure criteria were determined from the numerical simulations to build failure criteria maps that distinguished brittle and ductile failure as validated by the experimental observations. This study illustrates the generality of the Bouvard et al. (J Eng Mater Technol 131(4), 041206, 2013), which was previously employed to analyze an amorphous polycarbonate polymer. 相似文献
7.
Pingan Song Zhenhu Cao Yuanzheng Cai Liping Zhao Zhengping Fang Shenyuan Fu 《Polymer》2011,52(18):4001-4010
Despite the great potential of graphene as the nanofiller, to achieve homogeneous dispersion remains the key challenge for effectively reinforcing the polymer. Here, we report an eco-friendly strategy for fabricating the polymer nanocomposites with well-dispersed graphene sheets in the polymer matrix via first coating graphene using polypropylene (PP) latex and then melt-blending the coated graphene with PP matrix. A ~75% increase in yield strength and a ~74% increase in the Young’s modulus of PP are achieved by addition of only 0.42 vol% of graphene due to the effective external load transfer. The glass transition temperature of PP is enhanced by ~2.5 °C by incorporating only 0.041 vol% graphene. The thermal oxidative stability of PP is also remarkably improved with the addition of graphene, for example, compared with neat PP, the initial degradation temperature is enhanced by 26 °C at only 0.42 vol% of graphene loading. 相似文献
8.
It was established by instrumented impact testing on notched Charpy specimens (DIN 53453 standard, No. 2 bar) that PP homopolymers impact modified by EPDM sorts of different melt viscosities at a rate lower than 10% were subject to brittle fracture in a wide temperature range. The most efficient of the EPDM impact modifiers had melt viscosities similar to that of the starting PP under the conditions of mixing. The course of maximum load at rupture (Fmax) and notched impact strength as functions of temperature showed some analogies with one another as well as with the dynamic mechanical storage (E′) and with the mechanical loss factor (tan δ). Thus, linear regression analysis was applied to the following relations: Fmax vs. (E′; tan δ; impact strength), F2max vs. (tan δ, impact strength) and impact strength vs. tan δ. The optimum correlation coefficients were obtained for Fmax vs. E′ and impact strength vs. tan δ. The supposed linearity of the former relation suggested that notched small Charpy specimens behaved as linear elastic bodies at high-rate three-point bending while the latter function referred to the significant role of relaxation of the EPDM impact modifier in the dissipation of impact energy during brittle or semi-brittle fracture of the two-phase PP/EPDM blends. The above relations are rendered probable by the fact that frequency of impact load is 102 to 103 Hz while that of the dynamic mechanical measurements is about 101 Hz. 相似文献
9.
Mohammad Shayan Asenjan Seyed Ali Reza Sabet Mehdi Nekoomanesh 《Iranian Polymer Journal》2020,29(4):301-307
This research explores mechanical and high velocity impact response of hybrid long carbon/glass fiber-reinforced polypropylene thermoplastic composites (HLFT) with different fiber lengths. The work examines three hybrid long fiber thermoplastic composites, i.e., 5, 10 and 20 mm. The HLFTs were prepared by a combination of extrusion and pultrusion processes and using a cross-head die. Tensile and Izod impact tests were carried out to evaluate the mechanical performance of each HLFT compound. A gas gun with a spherical projectile was used to conduct high velocity impact tests at three velocities of 144, 205 and 240 m/s. The results showed that internal mixing operation caused extensive reduction in fiber length of all three LFT lengths. Tensile strength, modulus and Izod impact test results were the indications of higher values with increase in HLFT length. Comparison of these results for the HLFT with that of corresponding glass/PP LFTs, adopted from earlier work by Shayan Asenjan et al. (J Compos Mater 53:353–360, 2019), showed better performance of HLFT. The high velocity impact results showed a steady higher impact performance with the increase in HFLT fiber length for all impact velocities tested. Comparison of HLFT high velocity impact performance revealed better results for all impact velocities tested with that of the corresponding glass/PP LFT composite. 相似文献
10.
This work focuses on the influence of processing conditions on the nanocomposites structure, i.e. intercalated or exfoliated, and on the enhancement of mechanical properties of polypropylene (PP) nanocomposites. These nanocomposites were prepared using the melt intercalation technique in a co-rotating intermeshing twin screw extruder. In order to optimise processing conditions, both screw speed and barrel temperature profile were changed. The role of the compatibilizer (maleic anhydride grafted polypropylene) was also studied. The results obtained show that the barrel temperature is a very important parameter: using lower processing temperature, the apparent melt viscosity and, consequently, the shear stress are higher and, therefore, the exfoliation of the clay is promoted. Even using optimised processing conditions, exfoliation of clay can be achieved only when an high compatibility between polymer and clay exists: the PP nanocomposites containing maleic anhydride show an exfoliated structure and a sensible enhancement of mechanical properties while PP nanocomposites without compatibilizer show a structure mainly intercalated and a lower improvement of mechanical properties. 相似文献
11.
The effect of successive injection moldings on the thermal, rheological, and mechanical properties of a polypropylene impact copolymer (PP) was investigated. The crystal content decreased as the molecular weight decreased due to chain scission with repeated injection molding. The Young modulus and the yield stress remained constant, despite a drop in the strain to break. Virgin and recycled PP matrix were filled with nanosized calcium carbonate (CaCO3) particles. The effect of morphology on the thermal and mechanical properties of nanocomposites of virgin and recycled PP filled with nanosized CaCO3 particles was also studied. The mechanical properties of the nanocomposites were strongly influenced by the intrinsic toughness of the matrix and the concentration and dispersion of the filler. The yield strength and strain of virgin PP decreased gradually, while its Young's modulus increased slightly with increasing CaCO3 loading. These phenomena were less pronounced for the recycled matrix. Incorporation of nanoparticles to virgin matrix produced an increase in tensile stiffness and ductility, when good dispersion of the filler was achieved. However, the impact strength dropped dramatically for high filler contents. A significant increase in impact strength was observed for the recycled PP. POLYM. ENG. SCI., 50:1904–1913, 2010. © 2010 Society of Plastics Engineers 相似文献
12.
The organic treatment on a layered silicate used in nanocomposite synthesis is the interface between the hydrophilic layered silicate (clay) and hydrophobic polymer in the case of polypropylene. However, the typical synthesis of an organoclay can result in excess organic treatment which can hinder mechanical and flammability benefits. This excess organic treatment may result in plasticization of the polymer matrix, possibly removing some of the mechanical and flammability property benefits provided by the nanocomposite. In this paper, the effects of using Soxhlet Extraction on the Organoclays after synthesis was investigated. Soxhlet extraction times on organoclays were found to have an effect on the mechanical and flammability properties of the resulting polypropylene nanocomposite. The removal of excess organic treatment by Soxhlet extraction resulted in improvements in flex modulus, improved clay dispersion, delayed time to ignition, and lowered heat release rate during burning. 相似文献
13.
采用X射线衍射仪、差示扫描量热仪和偏光显微镜研究了5种高流动抗冲聚丙烯(PP)树脂的结晶特性和结晶动力学。结果发现:国产试样的结晶度与晶粒尺寸明显不同于进口试样;在等温结晶条件下。总结晶速率常数和总结晶速率随结晶温度的增加而下降,而结晶半值期增加;在所研究的温度范围内。所有试样的Avrami指数基本为2~3的非整数;在133℃以下,5^#试样的球晶生长速率明显高于其他试样,但在相同结晶温度时,国产试样的总结晶速率大于进口试样。5种试样在抗冲击性能上的差异归因于它们在结晶特性和结晶动力学方面的不同。 相似文献
14.
In this paper we describe the production of a polypropylene (PP)/carbon nanofibre (CNF) nanocomposite, and subsequent characterisation of the structure and properties of the nanocomposite material at various stages of blending. Dispersion of the CNF throughout the matrix PP was monitored by scanning electron microscopy (SEM), and analysis of the lengths of the individual CNF was estimated using dynamic light scattering (DLS). This latter technique enabled a comparison to be made between the measured Young's modulus of the material and that predicted by micromechanical modelling, using the fibre length as determined by DLS. The temperature performance of the nanocomposite material was determined, and this behaviour has also been modelled. 相似文献
15.
Polypropylene (PP)/org-attapulgite (ATP) nanocomposites were prepared by melt blending in a mixer apparatus. Org-attapulgite was attained by silane coupling agent modification first and then graft-polymerization with butyl acrylate. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the clay morphology and the dispersion of the org-attapulgite, respectively. The changes of crystalline structure for PP nanocomposites were characterized by X-ray diffraction (XRD). The mechanical properties of PP/attapulgite nanocomposites were studied through tensile and impact tests. The thermal and dynamic mechanical properties were characterized by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The strength and stiffness of PP/org-ATP nanocomposites were both improved significantly in the presence of organic attapulgite. In addition, the incorporation of org-ATP also gave rise to an increase of the storage modulus and the changes of the glass transition temperature for PP composites. TEM and XRD results revealed the addition of attapulgite did not change the crystal structure of PP, however org-attapulgite acted as nucleating agents for the crystallization of PP. 相似文献
16.
Hiroaki Miyagawa 《Polymer》2004,45(15):5163-5170
The thermo-physical properties and the impact strength of diglycidyl ether of bisphenol F (DGEBF) epoxy nanocomposites reinforced with fluorinated single-wall carbon nanotubes (FSWCNT) are reported. A sonication technique was used to disperse FSWCNT in the glassy epoxy network resulting in nanocomposites having large improvement in modulus with extremely small amount of FSWCNT. The glass transition temperature decreased approximately 30 °C with an addition of 0.2 wt% (0.14 vol%) FSWCNT, without adjusting the amount of the anhydride curing agent. This was because of non-stoichiometry of the epoxy matrix that was caused by the fluorine on the single-wall carbon nanotubes. The correct amount of the anhydride curing agent needed to achieve stoichiometry was experimentally examined by dynamic mechanical analysis (DMA). The storage modulus of the epoxy at room temperature (which is below the glass transition temperature of the nanocomposites) increased up to 0.63 GPa with the addition of only 0.30 wt% (0.21 vol%) of FSWCNT, representing an up to 20% improvement compared with the neat epoxy. The Izod impact strength slightly decreased when the amount of FSWCNT was increased to 0.3 wt%. The excellent improvement in the storage modulus was achieved without sacrificing impact strength. 相似文献
17.
18.
The processing-structure-property relationships of multiwalled carbon nanotubes (MWNTs)/epoxy nanocomposites processed with a magnetic field have been studied. Samples were prepared by dispersing the nanotube in the epoxy and curing under an applied magnetic field. The nanocomposite morphology was characterized with Raman spectroscopy and wide angle X-ray scattering, and correlated with thermo-mechanical properties. The modulus parallel to the alignment direction, as measured by dynamic mechanical analysis, showed significant anisotropy, with a 72% increase over the neat resin, and a 24% increase over the sample tested perpendicular to the alignment direction. A modest enhancement in the coefficient of thermal expansion (CTE) parallel to the alignment direction was also observed. These enhancements were achieved even though the nanotubes were not fully aligned, as determined by Raman spectroscopy. The partial nanotube alignment is attributed to resin a gel time that is faster than the nanotube orientation dynamics. Thermal conductivity results are also presented. 相似文献
19.
Li Zhang Qing‐Qing Ni Akihiko Shiga Yaqin Fu Toshiaki Natsuki 《Polymer Composites》2010,31(3):491-496
Polybenzimidazole (PBI) nanocomposites containing 0.5–5 wt% vapor grown carbon nanofibers (VGNFs) were successfully synthesized by solvent evaporation method. Fracture morphology examination confirmed the uniform dispersion of VGNFs in the matrix. The mechanical properties of neat PBI and the nanocomposites were systematically measured by tensile test, dynamic mechanical analysis (DMA), hardness measurement, and friction test. Tensile tests revealed that Young's modulus increased by about 43.7% at 2 wt% VGNFs loading, and further modulus growth was observed at higher filler loadings. DMA studies showed that the nanocomposites have higher storage modulus than neat PBI in the temperature range of 30–350°C, holding storage modulus larger than 1.54 GPa below 300°C. Outstanding improvement of hardness was achieved for PBI upon incorporating 2 wt% of VGNFs. The results of friction test showed that coefficient of friction of PBI nanocomposites decreased with VGNFs content compared with neat PBI. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers 相似文献
20.
A. K. Manta 《塑料、橡胶和复合材料》2016,45(4):157-165
A numerical model has been developed using the explicit FE code LS-DYNA in order to study the effect of geometrical and material parameters on the low-velocity impact response of carbon nanotube (CNT)/polymer nanocomposites. The model is based on a Representative Volume Element (RVE). The RVE is prismatic with a rectangular cross-section while the impactor is spherical. The simulations show that the presence of CNT significantly enhances the impact stiffness and the energy absorption capacity of the material. The enhancement increases with the CNT's volume fraction and it is larger at larger impact velocities. The effect of CNT's aspect ratio is found to be minor. The orthotropic behaviour of CNT assigns the RVE a higher energy absorption capacity than the isotropic behaviour at small impact velocities. The prediction of impact damage at large impact velocities indicates that the CNT makes the polymer more susceptible to fracture. 相似文献