首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we have explored the potential of core–shell poly(siloxane)-epoxy microspheres towards improving the dynamic properties of a conventional unsaturated polyester (USP). Micro-sized poly(siloxane) beads were prepared by suspension polymerisation route, where the particle dimensions could be tailored by varying the operating parameters, particularly stirring speed and feed concentration. The core was subsequently coated with epoxy to form an external layer compatible with the USP resin, with an aim to aid its homogeneous dispersion in the thermosetting resin. Toughened USP composites containing varying amounts of both coated and uncoated microspheres (3–10 % w/w) were prepared by curing under ambient conditions, and their mechanical properties were evaluated under both quasi-static and dynamic loading conditions. The introduction of epoxy-coated poly(siloxane) led to a proportional decrease in the tensile strength and modulus, which were found to compare well with the predictions based on Halpin–Tsai and Lewis–Nielson empirical models. Significant improvements in the impact strength of USP could be achieved, and under optimised conditions, 101 % increase in the impact strength was observed, which corroborated with significant increase in mean critical stress intensity factor (76 %). Morphological investigations of the fractured surface revealed the presence of characteristic features which were used to establish the underlying routes responsible for the toughened nature of the USP composites.  相似文献   

2.
The mechanical properties, thermomechanical properties, and fracture mechanic properties of block-copolymer (BCP), core–shell rubber (CSR) particles, and their hybrids in bulk epoxy/anhydride system were investigated at 23 °C. The results show that fracture toughness was increased by more than 268% for 10 wt % BCP, 200% for 12 wt % of CSR particles, and 100% for hybrid systems containing 3 wt % of each, BCP and CSR. The volume content of nanoparticles influences the final morphology and thus influences the tensile properties and fracture toughness of the modified systems. The toughening mechanisms induced by the BCP and CSR particles were identified as (1) localized plastic shear-band yielding around the particles and (2) cavitation of the particles followed by plastic void growth in the epoxy polymer. These mechanisms were modeled using the Hsieh et al. approach and the values of GIc of the different modified systems were calculated. Excellent agreement was found between the predicted and the experimentally measured fracture energies. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48471.  相似文献   

3.
Guar gum (GG) and its derivatives are commonly used in aqueous solutions as rheology modifiers. The use of polysaccharides as fillers in thermoset polymer composites has as yet not received that attention attributed to other materials. In the present study GG and the effect of acrylation on its filler properties were evaluated. Unsaturated polyester composites were evaluated for their mechanical properties as well as solvent resistance and water absorption. It was observed that the acrylate derivatives with the highest degree of substitution resulted in composites with the best mechanical properties as well as increased toluene and water resistance. Thus, polysaccharides could be used as reinforcing fillers in thermoset composites.  相似文献   

4.
A simple chemical technique has been used to prepare core–shell extender pigments based on Nigerian indigenous clays as core and titanium dioxide as shell. The prepared core–shell extender pigments were characterized using X-ray fluorescence and scanning electron microscopy. The physico-chemical properties of these extender pigments were also evaluated according to ASTM measurements. The study showed that the prepared core–shell pigments were nontoxic and environmentally friendly. They are of low cost and can be incorporated in semi-gloss paints, paper, rubber, and plastic composites without much effect on the volume. The characteristics of these pigments showed that they combine the properties of both their precursors, and have the potential to overcome their disadvantages, e.g., low hiding power of clays and photochemical activity of titanium dioxide.  相似文献   

5.
A new series of core–shell structured silver/polyimide (PI) nanocomposites was prepared by in situ polymerization followed by the chemical imidization of poly(amic acid) (PAA, precursor of PI) at a low temperature. The TEM images showed that the silver cores of the nanocomposites were encapsulated with homogeneous shells with thickness of 4 and 8 nm at silver contents of 90 and 60 %, respectively. The shell thickness was controlled by varying the content of PAA. FTIR spectroscopic analysis indicated that the imide ring formation occurred after the chemical imidization. The Ag/PI nanocomposites showed excellent thermal stability and exhibited only 10 % weight loss at 300 °C in the air. Moreover, percolation was observed at silver weight fractions close to the critical value, and the maximum dielectric permittivity of the nanocomposites was 120, which is about 40 times higher than that of pristine PI.  相似文献   

6.
Reinforcing rubber with natural fillers from agrarian wastes is a new area of interest in developing rubber composite technologies. Lignocellulosic material from sago seed shell is one of the important promising natural fillers having 37% cellulose used to reinforce styrene–butadiene rubber (SBR) for enhancing its mechanical properties. Moreover, chemically or physically modified natural fillers play a significant role in enhancing the properties of SBR like morphological, thermal, and electrical characteristics. In this investigation, the changes encountered in molecular mobility, glassy dynamics, thermal stability, flexibility, and tensile strength of SBR on reinforcing with unmodified and modified sago seed shell powder were studied using broadband dielectric spectroscopy (BDS) in conjunction with thermogravimetric analysis, and mechanical properties. BDS has been successfully employed to investigate the relaxation phenomena and glass/rubbery transition in SBR, as well as its composites with unmodified and modified sago seed shell powder over the frequency (10−1 to 107 Hz) and wide temperature range (−100 to 150°C). Experimental data were analyzed in terms of electric modulus formalism and were suited well with the Havriliak Nigami equation. The incorporation of filler and its nature (unmodified or modified it with polyaniline, PANI) greatly influenced the morphological pattern, miscibility, and mode of interaction with the rubber matrix of SBR, which owed a path to diverse charge transport mechanism in the composites. The mechanical properties of all the composites were in good correlation with the steepness index obtained from BDS. The tensile strength, tear strength, and hardness of SBR increased slightly on loading with unmodified cellulose, whereas with modified cellulose causes substantial enhancement in its tensile strength.  相似文献   

7.
The effect of core–shell rubber (CSR) toughening on mechanical and thermal properties of poly(lactic acid)/multiwalled carbon nanotubes (PLA/CNT) nanocomposites were investigated. The nanocomposites were prepared by direct melt blending method in a counter-rotating twin-screw extruder. The contents of CSR were varied between 5 and 20 wt % while the content of CNT was kept at 5 phr. The extruded samples were injection molded into the desired test specimens for mechanical and thermal properties analysis. The impact strength of PLA/CNT increased with increasing CSR content with concomitant decrease in tensile strength and modulus. Interestingly, the flexural strength increased at low CSR content before decreasing at 15 and 20% content. Differential scanning calorimetry analysis on the second heating cycle shows no crystallinity content for PLA/CNT and all CSR toughened PLA/CNT nanocomposites, while thermogravimetric analysis shows lower thermal degradation of all CSR toughened PLA/CNT as compared to PLA/CNT nanocomposite. This study reveals significant correlation between CSR loading with the mechanical and thermal properties of the nanocomposites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47756.  相似文献   

8.
Silica aerogels with a surface area as high as 773?m2?g?1 and a density of 0.077?g?cm?3 were produced from rice husk via sol–gel process and ambient pressure drying. A particulate composite material was prepared by adding silica aerogel particles of three different particle sizes (powder, granules and bead) to unsaturated polyester resin with a fixed volume fraction of 30%. Thermogravimetric and thermal conductivity studies revealed that silica aerogel composites were having higher thermal stability and thermal insulation than the neat resin. It was suggested that the preservation of aerogel pores from resin intrusion is important for better thermal properties. Larger silica aerogel particles have more porous area (unwetted region) which results in a lower degradation rate and lower thermal conductivity of the base polymer. However, the addition of silica aerogel into resin has reduced the tensile modulus of the polymer matrix where smaller particle size displayed higher toughness than those with bigger particle size.  相似文献   

9.
10.
Rubber–nickel nanocomposites were synthesized by incorporating freshly prepared nanometric nickel particles in two different matrices namely natural rubber and neoprene rubber according to specific recipes for various loadings of nano nickel and the cure characteristics of these composites were evaluated. The maximum torque values register an increase with the increase in loading of nickel in both composites and this is attributed to the non-interacting nature of nickel nanoparticles with rubber matrices. The cure time of natural rubber composites decreases with increase in the content of nickel, and in neoprene rubber cure, time increases with increase in filler content. In natural rubber, the curing reaction seems to be activated by the presence of nickel particles. The magnetization studies of the composites reveal that the magnetic properties of nickel are retained in the composite samples. The elastic modulus of natural rubber and neoprene rubber are largely improved by the incorporation of nickel particles.  相似文献   

11.
B4C ceramics have been widely used in armor plate and cutting tools due to their high hardness. However, their poor sintering performance and low fracture toughness have limited their extended applications. In order to solve these problems, B4C@TiB2 composite powders with core–shell structure were prepared by a sol–gel method using B4C and TiCl4 as raw materials and then sintered by spark plasma sintering. The composite powders were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The mechanical properties of B4C ceramics were tested by indentation and three-point bending methods. The results showed that the B4C@TiB2 composite powders exhibited a tight core–shell structure, and the chemical bonds on the surface were mainly B–C and B–Ti bonds. When the molar ratio of B4C:TiCl4 was 2:1, the relative density and bulk density of B4C ceramics reached 96.2% and 2.92 g/cm3, respectively. Because of the good sintering performance of the B4C@TiB2 composite powders, the Vickers hardness and fracture toughness reached 26.6 GPa and 5.22 MPa m1/2, respectively. The bending strength reached a maximum of 570 MPa. The excellent fracture toughness can be attributed to crack deflection, crack branching, and the residual thermal stress of the core–shell structure.  相似文献   

12.
Thermosetting acrylic latexes were synthesized using butyl acrylate (BA), methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA) via seeded two-stage process. A 2-level factorial experimental design was employed to investigate the effect of hydroxyl (core phase), carboxylate (shell phase) groups, and type of surfactant (Triton X200, Tergitol XJ) on the mechanical properties of thermosetting latexes. Eight latexes with varying concentration of HEMA, MAA and two types of surfactants were synthesized and crosslinked with three crosslinkers. Latex functionality for crosslinking was located in the core only, the shell only, and both the core–shell with varying concentrations. Melamine-formaldehyde (hexamethoxymethyl melamine) resin was employed to crosslink hydroxyl functionalities in the core. Carboxylic acid groups in the shell were crosslinked with zinc ammonium carbonate. HDI isocyanurate (Desmodur N3300A) were used to crosslink with hydroxyl or carboxyl functional groups in core and shell. The mechanical properties of coatings were evaluated in terms of tensile properties, cross-hatch adhesion, pencil hardness, and impact resistance. Design of experiment (DOE) was utilized to investigate the effect of variables on mechanical properties of crosslinked thermoset films.  相似文献   

13.
Polysilsesquioxanes (PSQ)-based core–shell fluorinated polyacrylate/silica hybrid latex coatings were synthesized with PSQ latex particles as the seeds, and methyl methacrylate, butyl acrylate, 3-(trimethoxysilyl) propyl methacrylate (MPS)-modified SiO2 nanoparticles (NPs), 1H,1H,2H,2H-perfluorooctyl methacrylate (PFOMA) as the shell monomers by emulsifier-free miniemulsion polymerization. The results of Fourier transform IR spectroscopy, transmission electron microscopy, and dynamic light scattering suggested the obtained hybrid particles emerged with trilayer core–shell pattern. Contact angle analysis, x-ray photoelectron spectroscopy, and atom force microscopy results indicated that the hybrid film containing SiO2 NPs showed higher hydrophobicity, lower surface free energy and water absorption, in comparison with the control system (without SiO2 NPs). Compared with the control system, the hybrid latex film containing SiO2 NPs in the fluorinated polyacrylate shell layer showed the higher content of fluorine atoms and a rougher morphology on the film surface. Additionally, thermogravimetric analysis demonstrated the enhanced thermostability of PSQ-based nanosilica composite fluorinated polyacrylate latex film.  相似文献   

14.
During this study, paraffin wax with low melting point was encapsulated in a urea–formaldehyde resin to prepare a novel microencapsulated phase change material (Micro-P6) for temperature regulation and thermal energy storage. The structure and properties of Micro-P6 were characterized by using Fourier transform infrared spectroscopy, differential scanning calorimeter, laser particle size analyzer, thermogravimetric analysis, contact angle analysis, and scanning electron microscope. The results indicated that the chemical structure of Micro-P6 meets the designed core–shell structure; and the paraffin wax with low melting point was successfully encapsulated by using urea–formaldehyde resin; and the Micro-P6 shows a spherical structure and rough surface, and the average size is 8.0–10.0 μm. Then, the performances of Micro-P6, such as core content, mechanical property, thermal conductivity and durability, were tested. Based on above characterization and performance test, it was indicated that the synthesized Micro-P6 could be used in the field of cementing and construction for temperature regulation and thermal energy storage. The applications of Micro-P6 in the field of cementing and construction will be completed in our next study. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48578.  相似文献   

15.
To improve the performances of a composite based on silica and unsaturated polyester resin, modification of silica surface and addition of a dispersing agent are required. The surface of raw silica was modified with vinyltrimethoxysilane in acidic conditions, adding methacrylic acid. Moreover, to enhance the compatibility between silica and polyester resin, a block copolymer which reacts as a dispersing agent was added. The mixture of these components is named “Giral.” The mechanism of interaction of the different components of the “Giral” with the raw silica is described. Adding this formulation to a mixture of polyester resin and silica leads to a decrease of the viscosity of the polyester resin/silica system and the mechanical properties of the composite thus formed are improved.  相似文献   

16.
Multiferroic (MF) composites based on nanoparticles consisting of a silica core and a shell of spin-variable Fe(III) complexes in a polymer matrix (polystyrene) were synthesized and characterized by different methods. The nanoparticles had the formula 80SiO2·20{Fe[OSi(Me)(OEt)2]3}, and their particle size was on the order of 5–7 nm. Dielectric and electron spin resonance studies showed the presence of two types of Fe ions in the nanocomposite. Iron ions in the low-spin state [Fe(III)-LS] and iron ions in the high-spin state [Fe(III)-HS], which were bound by indirect exchange interactions through oxygen and silicon atoms {[Fe(III)-LS]─O─Si─O─[Fe(III)-HS]} were responsible for the MF properties of the composites with core–shell nanoparticles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47681.  相似文献   

17.
Quasi-static mechanical properties of aramid fibres reinforced natural rubber/SBR composites are comprehensively investigated via scanning electron microscopy (SEM), uniaxial tensile tests, multi-step stress relaxation, and the Mullins experiment. The strength, stiffness, viscoelasticity, and Mullins effect of composites are analysed, and the micro failure mechanism is also explored. It is shown that the samples appear similar to a laminate plate with random short fibres in a plane. The results of the uniaxial tensile tests indicate that the tensile strength and elongation at failure decrease, while the stiffness increases following the addition of a small amount of aramid fibres into the rubber matrix. The multi-step relaxation and Mullins experiments reveal that the aramid-short-fibres weaken the viscoelasticity of rubber composites. Finally, the strain energy of the composite is divided into four parts, and one part is considered with respect to its application to the study of interface destruction between the matrix and fibre.  相似文献   

18.
A material with high damping property and based on epoxy/polyacrylate (EP/PA) composite particles was synthesized by two-stage emulsion polymerization. Transmission electron microscopy (TEM) showed that the composite particles have a spherical morphology, a core–shell structure and a diameter of 100 nm–130 nm. Fourier transform infrared spectra (FTIR) indicated the cross-linking between EP groups in the core layer and carboxyl groups in the shell layer of the composite particles during film formation. The cross-linking reaction improved the dynamic mechanical property by the interaction of core and shell polymers. The effects of the cross-linking agent and ratio of the two polymers on the damping capacity were studied by dynamic mechanical analysis (DMA). DMA results revealed that a certain amount of acrylic acid could markedly enhance the loss factor (tan δ) and slightly widen the damping temperature range. When the EP/PA ratio was 1:7, peak values for tan δ of the composite materials could reach 2.10, exceeding the value for most damping materials. The result implies that the EP/PA composites have great potential application in damping steel surface coatings.  相似文献   

19.
Clay was modified by using a polymeric coating agent, a silicane coupling agent, and a titanate coupling agent together with the antioxidant for preparing the clay–rubber masterbatch. After the thermooxidative, photooxidative, and ozone aging, the properties of the masterbatch were also determined. The results indicate that, under the synergistic actions of the polymeric coating agent, antioxidant, and coupling agent, the thermooxidative and photooxidative aging resistances of the masterbatch were greatly improved. The properties of ozone aging resistance of the masterbatch can be increased by 50% under the combined action of a new kind of amine antioxidant with a titanate coupling agent. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 338–342, 2001  相似文献   

20.
Having considered the mechanical and optical properties related to microstructure, the authors of the present work did a study of the in situ interface formation between polyacrylonitrile/poly(methyl methacrylate) (PAN/PMMA) core–shell nanofibers and PMMA resin so as to prepare reinforced PMMA nanocomposites (NCs). The NCs were produced using the dip-coating method. The core–shell nanofibers were generated via phase separation of PAN/PMMA solution during the conventional electrospinning. The results of attenuated total reflection-Fourier transform infrared spectroscopy, transmission electron microscope, and energy dispersive X-ray spectrometer confirmed the formation of core–shell structure of the PAN/PMMA nanofibers. According to the findings of the study, the NCs reinforced with 1.7% volume fractions (v f) of the core–shell nanofibers, having the composition of 50/50 (PAN/PMMA), had the highest tensile and bending properties. The obtained results showed that by increasing the v f of nanofibers from 1.7 to 2.9%, the tensile and bending moduli increased by 29.9 and 44.2%, respectively. Increasing v f to 5.7% decreased the just-mentioned properties. Moreover, the transparency of NCs decreased by less than 1, 10, and 18%, respectively, when the aforementioned volume fractions were applied. The theoretical values for the tensile modulus were calculated using the models proposed by Manera, Pan, and Halpin–Tsai–Nielsen. The best prediction was made when the model proposed by Halpin–Tsai–Nielsen was applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号