首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory tests were conducted on 12 different carbonate rocks to investigate index properties of deteriorated rocks due to physical weathering. Physical weathering due to freeze–thaw and thermal shock action for 20 cycles, was simulated, following the procedure suggested by standard methods. Index properties, P-wave velocity, uniaxial compressive strength and Schmidt hardness, for the three series of the rock samples were determined for fresh, freeze–thaw and thermal shock conditions. It was found that the index properties of rocks treated with freeze–thaw and thermal shock decrease in varying levels with respect to initial values. A model equation predicting the index properties of rocks due to freeze–thaw and thermal shock treatment was developed by multiple regression analysis of measured data. This model explains decrease in index property of a deteriorated rock depending on its initial property and porosity of rock with the coefficients for a specific index property, given in the paper for the both freeze–thaw and thermal shock treatments. Model was validated by statistical tests. In order to estimate the index property for any cycle of freeze–thaw or thermal shock treatment, this model equation was incorporated into a previously suggested model to eliminate a decay constant required for that model to be determined for a specific rock in the laboratory. So, the final model equation could accurately predict a property of a deteriorated carbonate rock depending on treatment cycle, and initial index property and porosity. This was also proved by comparing the model with compressive strength data of a researcher for freeze–thaw cycles.  相似文献   

2.
The computerized tomography (CT) images and CT values for the process of compression, micro-cracking, and dilation up to the failure of sandstone specimens under different loading levels have been obtained using the real-time CT technique for triaxial loading of sandstone subjected to chemical corrosion. Clear CT images and CT value of the stages from compression of micro-cavities→emergence of micro-cracks→bifurcation→development→fracture→collapse→unloading can be observed. The CT value, equivalent to rock density at the CT scan layer, is the most important parameter describing the damage evolution process of rock. The paper also presents results of the corrosive influence of chemical solutions with different pH values and ionic concentrations on the sandstone strength. Stronger acidity (pH<7) or causticity (pH>7) has a stronger effect on the rock micro-fracturing evolution. The mechanism of damage evolution of sandstone is analyzed and a damage model based on the chemical corrosive influence and CT values is proposed.  相似文献   

3.
冻融条件下岩石损伤扩展特性研究(英文)   总被引:3,自引:0,他引:3       下载免费PDF全文
在冻融环境条件下,岩石内损伤裂纹的冻胀、开裂是一系列物理、力学复杂过程,所以研究冻融环境条件下岩石的损伤扩展机理具有重要意义。本文从损伤力学角度出发,借助于岩石损伤CT扫描实验研究冻融条件下岩石损伤扩展特性。主要做了以下两方面的工作一是研究冻融循环对岩石损伤的影响,从岩石的含水率、密度、损伤CT数的变化等实验现象,着重探讨冻融条件下岩石内部水分迁移、水冰相变对岩石损伤及其扩展的影响;二是研究了冻结温度对岩石损伤的影响,对实验现象主要从损伤CT数统计频率的变化来研究,分析时主要考虑了水冰相变体积膨胀和岩石材料本身物理特性两方面的因素。研究结果表明,冻融循环与冻结温度对岩石损伤有一定影响,而且就相同的温度条件来讲,岩石孔隙大小、孔隙贯通程度、孔隙率及岩石本身强度对损伤有着重要影响。  相似文献   

4.
为防治季节性寒区隧道冻害,提出了一种基于电伴热的主动加热保温防冻方法,该系统由“100 W/m2发热电缆+4 cm保温层+保护层+防火层”组成,并且给出了施工中的注意事项和要点。将该方法成功应用于图们至珲春高速公路东南里隧道试验段工程,初步试验结果表明,通电1 h后,衬砌背后温度开始升温,3 h之后衬砌背后达到正温、温度基本稳定,发热电缆“热阻效应”明显,初步验证了该方法的可行性及有效性。研究结果可为寒区隧道冻害防治的设计与施工提供借鉴。  相似文献   

5.
Rock mass behaviour model selection and, in particular, rock mass post-failure behaviour are key issues in analysing tunnel stability, in particular in terms of the correct application of design techniques such as the convergence–confinement method and also numerical modelling. Three different quality rock masses (good, average and poor) were defined in which simulated standard tunnels were excavated. Different behaviours – including elastic perfectly plastic, elastic brittle and three strain softening behaviours – were modelled for each type of rock mass and increasingly realistic parameters were calculated, along with the corresponding ground reaction curves. The results obtained demonstrate the importance of adequate post-failure behaviour model selection for tunnel analysis. Also assessed are the effects of the standard support and reinforcement.  相似文献   

6.
The state of induced stress measured by the compact conical-ended borehole overcoring technique in the immediate roof of an approach tunnel excavated under high rock stress is described. During the measurements, core disking was observed. An X-ray Computed Tomography (CT) scanner was used to select strain data uninfluenced by the core disking; then the induced rock stress was estimated from selected strain data. From these results, it is shown that the non-destructive investigation using X-ray CT is effective for visualization of the fracturing within cores and the selection of strains measured during overcoring. Furthermore, the Mohr–Coulomb failure criterion parameters for the rock mass were estimated by comparing the measured stresses with the shear strength of in situ rock and the uniaxial compressive strength determined in laboratory tests.  相似文献   

7.
To study the influence of freeze–thaw cycles under complex chemical environments on the red sandstone, nuclear magnetic resonance (NMR) technology was used to analyze the damage evolution law of red sandstone. The freeze–thaw cycles were carried out on four groups of samples soaked in sulfuric acid solution, sodium hydroxide solution, sodium chloride solution and pure water, respectively. Further, NMR tests were performed on the samples and the porosity change of samples, T2 distribution and nuclear magnetic resonance images were analyzed. Results show that: (1) chemical environments have significant effects on the freezing-thawing damage, and the porosity increases linearly with increasing number of freeze–thaw cycles. (2) Under the frost-heaving force and ionic reactions, the T2 spectrum will successively shift towards the left and then to the right with increasing number of freeze–thaw cycles. Micropores will constantly appear, and small pores will dynamically expand into macropores. (3) With increasing number of freeze–thaw cycles, the areas of light spots in NMR images will increase gradually, which means that the damage degree is aggravated with continuous development of internal pores. (4) The samples soaked in sodium hydroxide solution and sodium chloride solution are damaged more seriously than those soaked in sulfuric acid solution and pure water. By analyzing and comparing the NMR characteristics of rock under the coupled effects of chemical environments and freeze–thaw cycles, more reliable test data will be available to study the damage mechanism of rock.  相似文献   

8.
基于CT图像的冻结岩石冰含量及损伤特性分析   总被引:3,自引:0,他引:3  
冻结岩石中冰含量对其热力学及损伤特性有重要影响,研究岩石冻结过程中冰含量随温度的变化规律可以为冻结岩石工程的安全稳定性评价提供科学依据。运用CT识别技术,进行不同温度梯度下冻结岩石的CT扫描实验,获得20 ℃、-2 ℃、-5 ℃、-10 ℃、-20 ℃、-30 ℃下岩石的CT扫描图像,实现了冻结岩石CT图像的伪彩色增强和直方图分析,完成了冻结岩石冰含量及损伤信息的数字表述,对冰含量随温度的变化规律进行定量分析。依据损伤力学理论,定义以冰含量表示的冻结损伤变量,探讨了未冻水含量和温度梯度对冻结岩石损伤特性的影响规律。研究结果表明:(-2 ℃,-5 ℃)是水冰剧烈相变的温度区间,冻结损伤演化起始和急剧增大阶段;(-5 ℃,-10 ℃)是冻结损伤发展阶段;(-20 ℃,-30 ℃)是冻结损伤趋于稳定的温度区间。所定义的冻结损伤变量能够描述温度降低过程中岩石损伤的演化过程,基于冻结岩石CT图像伪彩色增强的冻结岩石损伤演化的定量分析为冻结岩石工程的稳定性研究提供了新的思路和方法。  相似文献   

9.
The study investigated the long-term performance/durability of yellow travertine against various environmental processes using several accelerated weathering tests: wet–dry, freeze–thaw and salt crystallization. Prior to the accelerated weathering tests, the specimens were separated into two groups based on their porosities. The re-crystallization pressure of Na2SO4 salt was found to be the most destructive factor in the deterioration of the yellow travertine, with a maximum of 50% loss of integrity recorded. The recurrent cycles of wetting–drying and freezing–thawing caused relatively minor damage. After the experimental studies, the disintegration rate was statistically evaluated using the alteration index–alteration velocity and the decay function approaches. Both statistical models confirmed that the rate of disintegration was higher with salt re-crystallization pressures in the less porous yellow travertines compared with that resulting from wet–dry and freeze–thaw cycles.  相似文献   

10.
We present a novel methodology for estimation of equivalent Mohr–Coulomb strength parameters that can be used for design of supported tunnels in elasto-plastic rock masses satisfying the non-linear empirical Hoek–Brown failure criterion. We work with a general adimensional formulation of the Hoek–Brown failure criterion in the space of normalized Lambe's variables for plane stress, and we perform linearization considering the stress field in the plastic region around the tunnel. The procedure is validated using analytical solutions to a series of benchmark test cases. Numerical solutions are also employed to validate the procedure in cases for which analytical solutions are not available. Results indicate that the stress field in the plastic region around the tunnel, as well as the linearization method employed and the quality of the rock mass, has a significant impact on computed estimates of equivalent Mohr–Coulomb strength parameters. Results of numerical analyses also show that our proposed linearization method can be employed to estimate loads and moments on the tunnel support system. We recommend the equating model responses (EMR) method to compute equivalent Mohr–Coulomb strength parameters when the tunnel support pressure is accurately known, and we further show that our newly introduced linearization method can be employed as an alternative to the best fitting in the existing stress range (BFe) and best fitting in an artificial stress range (BFa) methods, providing performance estimates that are generally better than estimates of the BFe and BFa methods when differences with the response of the Hoek–Brown rock mass are of engineering significance (say more than 10%).  相似文献   

11.
为研究寒区隧道非冻土段在冻融循环条件下的底部融沉规律以及洞内不同的气温对隧道底部融沉变形的影响。利用温度场解析解确定非冻土段范围,采用有限元进行建模计算。计算结果显示:在冷空气作用下,原来处于非冻结状态的围岩开始发生冻结,并产生向上的冻胀位移,表层围岩的冻融位移最大,初期最大冻胀位移可达8 mm,随着洞内气温的周期性变化,底部围岩出现周期性的冻融,最大融沉位移逐年增加,第8年开始冻融变形达到稳定,最大融沉位移可达20.0 mm,冻胀位移则稳定在5 mm左右。总体来说,随着围岩温度周期性变化趋于稳定,其冻融位移的周期性变化也趋于稳定。在不同气温影响下,随着隧道进深的增加,隧道底部的最大冻胀位移和融沉位移均减小。  相似文献   

12.

Access tunnel in the main powerhouse of Shuangjiangkou hydropower station was deep buried with high in situ stress and complex geological conditions. Microseismic monitoring technology was established to monitor microcrack evolution process inside the surrounding rock in early excavation stage. Serious falling blocks in the left spandrel of the tunnel were predicted in a timely manner by delimiting major damage areas in the tunnel. Based on comparative analysis on microseismic activity law and field failure characteristics of the access tunnel, a quantitative index was supposed between slight rockburst like falling blocks and microseismic events. Moreover, the change law of daily average apparent stress difference and b value were analyzed based on microseismic event data. In addition, a three-dimensional numerical simulation software (RFPA3D) was used to simulate the damage distribution around the tunnel, and a relationship between spatial position of tunnel damage and direction of the maximum principal stress was qualitatively analyzed. The study results showed that advance speed of the tunnel working face was an important factor affecting the state of stress redistribution in surrounding rock mass, and the change law of b values of microseismic events could be used to predict activity state inside the surrounding rock effectively, which reflected mechanical properties and stress state of surrounding rock. In particular, field falling blocks became more serious with increasing b value, and field surrounding rock was relatively stable with minor b value. A risk of surrounding rock instability was relatively high with small b values. It provided an efficient method of predicting and assessing slight rockburst like falling blocks. The study results can provide significant guidance for field construction and later construction planning.

  相似文献   

13.
深埋隧道围岩损伤破坏模式的数值试验研究   总被引:1,自引:0,他引:1  
 深部岩体具有内禀特性。在开挖过程中,由于应力重分布导致围岩损伤破坏,传统岩体力学未能有效揭示其破坏机制。随着细观损伤岩体力学的发展,采用损伤观点解决深埋隧道围岩破坏问题逐渐显示出其优越性,但目前仅在均质性假设的基础上对应力状态和破坏判据进行研究,缺乏对其破坏全过程的相关研究。采用RFPA2D软件对通渝隧道二叠系栖霞组岩性为石灰岩且埋深超过1 000 m的K22+029断面在开挖过程中围岩的渐进破坏过程进行模拟,使用EMS–2型工程多波地震仪实测围岩破坏前、后波速的变化,定量模拟计算围岩损伤度的变化,揭示深埋隧道围岩破坏过程的损伤演化特性及损伤破裂过程中声发射、剪应力及岩体纵波波速等因素的变化特性,得出深埋硬岩隧道以拉剪型破坏为主,围岩破坏顺序依次为拱顶开裂→左、右拱肩裂纹扩展→左、右拱肩围岩深部裂纹;损伤过程中声发射事件数与围岩损伤程度近似成正比关系;损伤围岩表现出明显的非线性特性和损伤局部化特征。所得结论对于隧道施工支护具有指导意义,也为揭示深埋隧道围岩破坏机制进行有益的尝试。  相似文献   

14.
According to the basic theories of heat transfer, geocryology and fluid mechanics, taking the coupled problem of the heat transfer of the rock surrounding the tunnel and the heat convective between the air in the tunnel and the rock surrounding the tunnel into account, three-dimensional calculating model of the coupled problem are presented. The finite element formulae of this problem are obtained by Galerkin’s method, and the computer program of the finite element is compiled. Using the program, three-dimensional nonlinear analyses for the coupled problem of the heat transfer of the rock surrounding the tunnel and the heat convective between the air in the tunnel and the rock surrounding Fenghuo mountain tunnel on the Qinghai–Tibet Railway are made. The agreement between the calculated results and the in-situ observed data is seen to be very good. The calculated results illustrate that the freezing–thawing situation of the rock surrounding the tunnel can correctly be predicted even if the air temperature distribution along the tunnel is unknown. In thus way, the large cost of in-situ observation for the air temperature in the tunnel can be saved.  相似文献   

15.
The initiation and growth process of cyclic ice body in porous systems are affected by thermo-physical and mass transport properties as well as by gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals reaches a significantly higher value under cyclic freeze–thaw conditions. Moreover, disintegration of concrete structures is aggravated by marine environments, higher altitudes, and northern areas. A serious concern for concrete engineers is that the property of cyclic freeze–thaw with crack growth and the deterioration, caused by accumulated damages hard to be identified by testing. In order to predict the accumulated damages by cyclic freeze–thaw, an optimized regression analysis by response surface method (RSM) is performed. Such important parameters for cyclic freeze–thaw-deterioration of concrete structures as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing are used to construct the limit state function of RSM. The regression equation fitted to the important deterioration criteria such as accumulated plastic deformation, relative dynamic modulus and equivalent plastic deformations served as the probabilistic evaluation of the performance to resist the structural degradation. The prediction of relative dynamic modulus and residual strains after 300 cycles of freeze–thaw showed good agreements with the experimental results, showing that the RSM result can be used to predict the probability of failure for the accumulated damage by cyclic freeze–thaw using designer specified critical values. Hence, it is possible to evaluate the life cycle management of concrete structures by the proposed prediction method in consideration of the accumulated damage due to cyclic freeze–thaw.  相似文献   

16.
The Lower Kihansi unlined high-pressure tunnel is the first of its kind to be constructed in Tanzania. The pressure tunnel consists of a 500 m vertical shaft and a 2.195 km inclined headrace tunnel. The cross sectional area of the shaft is 25 m2 and that of the headrace tunnel is 30–37.5 m2. The headrace tunnel slopes 1:7 towards the powerhouse cavern. The pressure tunnel acts as waterway towards the underground hydroelectric power generation plants with a maximum generating capacity of 180 MW. The Kihansi River has been deviated through the shaft and headrace tunnel from an elevation of 1,146–300 m above sea level. The maximum water pressure created by this deviation is 8.5 MPa.The decision not to steel line the pressure tunnel was reached after the excavation and documentation of the underground rock mass. The hydraulic jacking and hydro-fracturing tests confirmed the rock to have a minimum acceptable confining stress of 9.6 MPa, capable of withstanding the expected water pressure in the tunnel. The permeability of the rock mass is relatively low and any poor zones were sealed by grouting.The discontinuities had a favourable orientation with respect to the tunnel axis such that rock bolts and steel fibre reinforced shotcrete could be used to provide the necessary support. No failures occurred and the decision not to line the Kihansi high-pressure tunnel has proved both technically acceptable and economical.  相似文献   

17.
通过对岩石试样在加载前后测得的CT数作差值运算,可获得岩石试样在不同应力阶段的CT密度损伤增量。在岩石CT密度损伤增量灰度图像中,试样边界被分成两半,其中一半为黑色,另一半为白色,这一现象称之为“阴阳环”现象。为揭示这一现象的形成机制,对岩石试样某一扫描断面在4个不同应力阶段CT图像的CT数分布进行对比研究。分析结果表明,加载阶段的CT图像相对初始CT图像发生错位。为查清图像错位与“阴阳环”形成之间的关系,建立“阴阳环”生成模型,同时揭示图像错位产生“阴阳环”现象的物理机制。在此基础上,对加载阶段的CT图像进行配准校正,消除密度损伤增量的计算误差。  相似文献   

18.
依据对岩石长期强度的认识,基于环境因素影响下岩石强度、弹模等物理力学性质随时间劣化及其内部细观损伤积累等观点,应用RFPA数值模拟方法,模拟了隧洞围岩的时效破坏过程,并与相应的物理模型试验结果进行了对比。隧洞数值模拟试验得到了拱顶、拱底以及两侧帮的时效变形特征曲线,与实际物模试验结果表现出了较好的一致性,并且发现隧洞围岩宏观破坏是细观损伤实时演化及逐步积累的最终表现。进一步模拟分析了侧压系数对隧洞时效变形破坏特性的影响,模拟结果显示,随着侧压系数的增大,隧洞左右边墙间的闭合位移逐渐增大,而隧洞拱顶拱底间的收敛位移随侧压系数的增大逐渐减小,并对隧洞围岩的局部的细观损伤演化过程及宏观时效破坏模式做出了清晰的解释。  相似文献   

19.
Weak rocks such as shale, slate, phyllite and schist, and the rock mass of weakness/fault zones are incapable of sustaining high tangential stress. Severe tunnel squeezing is therefore common in the tectonically active Himalayan rock mass and is one of the major areas of concern regarding stability. A reliable prediction of the extent of squeezing is essential so that a strategy can be established regarding stabilizing measures and for optimizing the support well in advance (during planning and design). In this paper, a probabilistic approach to uncertainty analysis that focuses on the effect of the variations in each input parameter of squeezing is used for analyzing and predicting the extent of tunnel squeezing for two tunnel cases in Nepal; Kaligandaki “A” (completed) and Middle Marsyangdi (under construction). A semi-analytical method suggested by Hoek and Marinos [Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnels Tunnell Int, 2000; 32(11 and 12): 45–51 and 34–36] for predicting squeezing, an empirical formula proposed by Panthi [Analysis of engineering geological uncertainties related to tunnelling in Himalayan rock mass conditions. PhD thesis, Department of Geology and Mineral Resources Engineering. Norwegian University of Science and Technology (NTNU), Norway, 2006] and the Palisade's 2002 version of @Risk statistical software program have been used for the uncertainty analysis. The analysis results for Kaligandaki indicate fairly good correlation between predicted and actually measured squeezing. The same approach has been used for predicting the degree of tunnel squeezing at Middle Marsyangdi tunnel. It is concluded that the methodology proposed in this paper has potential for predicting the squeezing of future tunnel projects in weak rock mass conditions.  相似文献   

20.
This paper presents the interim results of an on-going study on the influence of aggressive exposure conditions on the behaviour of epoxy adhesive bonded concrete–glass fibre reinforced polymers (GFRP) joints. The type of specimen used in this study is a push-off double lap shear specimen. Twenty-four of these push-off specimens consisting of concrete prisms, 100×100×300-mm, bonded with 470-mm long, 90-mm wide, and 3.5-mm thick GFRP plates on two opposite faces were tested. The bond length of the plate over the concrete surface was 200 mm. Two different concrete strengths were used, and they were suitably air entrained. The specimens were subjected to three accelerated ageing regimes in the laboratory for approximately 9 months. The accelerated tests consisted of exposing the specimens to alternate wet–dry cycling in 5% sodium chloride solution, cyclic freeze–thaw in air with a temperature of 20°C and −17.8°C, and a combination of chloride immersion and freeze–thaw cycles. The specimens were comprehensively instrumented, and tested to failure after the exposure regime. The structural performance of the exposed specimens is then compared with that of similar control specimens kept in laboratory environment in terms of load carrying capacity, longitudinal force distribution, shear stress development in the plate, plate end slip, and differential movements between the plate and the concrete substrate. There was clear indication that all the exposure regimes increased the bond transfer length, the magnitude of the shear stress distribution and the plate slip. The combined chloride immersion/freeze–thaw cycles produced the largest differential movements between the plate and the concrete substrate. The duration of exposure, however, was not long enough to affect the strength of the joints. Overall, the results were very consistent, and showed that accelerated tests could inflict deterioration in the adhesive bonded concrete–GFRP joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号